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Abstract

Bayesian network is applied widely in machine learning, data mining,
diagnosis, etc; it has a solid evidence-based inference which is familiar to
human intuition. However Bayesian network causes a little confusion
because there are many complicated concepts, formulas and diagrams
relating to it. Such concepts should be organized and presented in clear
manner so as to be easy to understand it. This is the goal of this report.

This report includes 4 main parts that cover principles of Bayesian
network:

Part 1: Introduction to Bayesian network giving some basic concepts.

Part 2: Bayesian network inference discussing inference mechanism inside
Bayesian network.

Part 3: Parameter learning tells us how to update parameters of Bayesian
network.

Part 4: Structure learning surveys some main techniques to build up
Bayesian network.
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1.0 Introduction
1.1. Bayesian rule

Bayesian network theory starts with the concept of Bayesian
inference, a form of statistical method, which is responsible
for collecting evidences to change the current belief in given
hypothesis. The more evidences are observed, the higher
degree of belief in hypothesis is. First, this belief was
assigned an initial probability. When evidences were
gathered enough, the hypothesis is considered trustworthy.

Bayesian inference was based on Bayesian rule with some
special aspects:

P(E|H)* P(H
p(H [g) = PEIHPH)
P(E)
Where H is probability variable denoting a hypothesis
existing before evidence and E is also probability variable

notating an observed evidence.

P(H) is prior probability of hypothesis and P(H | E) which is
the conditional probability of H with given E, is called
posterior probability. It tells us the changed belief in
hypothesis when occurring evidence.

P(E) is the probability of occurring evidence E together all
mutually exclusive cases of hypothesis. If H and E are

discrete, P(E) = z P(E|H)* P(H) otherwise
H

f(E) =I f(E|H)f(H)dH with H and E being continuous, f

denoting probability density function.

When P(E) is constant value, P(E | H) is the likelihood
function of H with fixed E. Likelihood function is often used
to estimate parameters of probability distribution.

1.2. Bayesian network

Bayesian network (BN) is the directed acyclic graph (DAG)
[1] in which the nodes (vertices) are linked together by
directed edges (arcs); each edge expresses the dependence
relationships between nodes. If there is the edge from node
A to B, we call “A causes B” or “A is parent of B”, in other
words, B depends conditionally on A. So the edge A-B
denotes  parent-child, prerequisite or cause-effect
relationship. Otherwise there is no edge between A4 and B, it
asserts the conditional independence. Let V={X1, X2, X3,..., Xn}
and E be a set of nodes and a set of edges, the BN is denoted
as below:

G=(V, E) where G is the DAG, Vis a set of nodes and E'is a set

of edges

Figure 1.1: Bayesian network.

Note that node X; is also random variable. In this paper the
uppercase letter (for example X, Y, Z, etc.) denotes random
variables or set of random variables; the lowercase letter
(for example x, y, z, etc.) denote its instantiation. We should
glance over other popular concepts.
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- Ifthere is an edge between X and Y (X Y or X~ Y) then
X and Y are called adjacent each other (or incident to the
edge).

- Given k nodes {X1, Xz, X3,..., Xk} in such a way that every
pair of node (X Xi-1) are incident to the edge Xi— Xi+
where 1< i<k-1, all edges that connects such k nodes
compose a path from X; to Xk denoted as [Xi1, Xz, X3,..., Xk]
or X1-X2-..-Xw The nodes Xz, X3.., Xk1 are called
interior nodes of the path. The sub-path Xm—..Xn is a
path from Xm to Xn: Xm — Xm+1 — ... » Xn where I <m<n<k.
The directed cycle is a path from a node to itself. The
simple path is a path that has no directed cycle. The DAG
is the graph that has no directed cycle.

- Ifthereis a path from X to Y then X is called ancestor of Y
and Y is called descendant of X. If Y isn’t a descendant of
X, Yis called non-descendent of X.

- If the direction isn’t considered then edge and path are
called link and chain, respectively. Link is denoted A - B.
Chain is denoted A4 - B - C, for example.

- Graph G is a tree if every node except root has only one
parent. G is called single-connected if there is only one
chain (if exists) between two nodes. Almost BN (s)
surveyed here are single-connected DAG (s).

The strength of dependence between two nodes is
quantified by conditional probability table (CPT). In
continuous case, CPT becomes conditional probability
density function (CPD). So each node has its own local CPT.
In case that a node has no parent, its CPT degenerates into
prior probabilities. For example, suppose Xk is binary node
and it has two parents X; and Xj, the CPT (or CPD) of Xk which
is the conditional probability P(X« [ X; X)) has eight entries:

P(Xi=1/X:=1, P(Xi=0/Xi=1,
Xj=1) X=1)
P(Xi=1/X:=1, P(Xi=0/Xi=1,
X=0) X=0)
P(Xi=1]X:=0, P(Xi=0/X:=0,
X=1) X=1)
P(Xk=1]X:=0, P(Xi=0/X=0,
Xj=0) Xi=0)

It is asserted that if X; is binary node and has n parents then
its CPT has 2! entries. However only 2" entries are
specified in practice due to P(Xi=0 [ ...) = 1- P(Xi=1/...) when
Xi is binary. In case that Xi has k possible values, each CPT
has k" entries.

Example 1.1: Suppose event “cloudy” is cause of event
“rain”. Events “rain” and “sprinkler” which in turn is cause of
“grass is wet” [5] [7]- So we have three causal-effect
relationships of: I-cloudy to rain, 2- rain to wet grass, 3-
sprinkler to wet grass. This model is expressed below by BN
with four nodes and three arcs corresponding to four events
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and three relationships. Every node has two possible values
True (1) and False (0) together its CPT.
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Figure 1.2: Bayesian network with CPT (s) in example 1.1.

Let PA; be the set of parents of node X;, the joint probability
distribution of whole BN is defined as product of CPT(s) or
CPD(s) in continuous case of all nodes.

P(X, X, X,) = [ [ P(X, [PA) 12

So BN is represented by its joint probability distribution P
and its DAG.
(G, P) where G=(V, E) is a DAG and P is joint probability
distribution.

Suppose i is the subset of PA; such that Xi must depend
conditionally and directly on every variable in 0. In other
words, there is always an edge from each node in £; to X; and
no intermediate node between them. This criterion is called
as Markov condition which will be discussed later. The joint
probability P is re-written as below:

P(Xp, X, X)) = [ P(X 1) 03)
i=1

Back the “wet grass” BN in example 1.1, the joint probability
is:
P(C R, S, W)=P(C)*P(R)*P(R/C)*P(S|C)*P(W|CR.S)

We have P(S [ C) = P(S) due to the conditional independence
assertion about variables S and C. Furthermore, because S is
intermediate node between C and W, we should remove C
from P(W [ C, R, S), hence, P(W|C, R, S)=P(W|/R,S).In short,
the joint probability is shown below:

P(C R, S, W)=P(C)*P(S)*P(R[C)*P(W|R,S)
1.3. Bayesian network reference

Using Bayesian reference, we need to compute the posterior
probability of each hypothesis node in network. In general,
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the computation based on Bayesian rule is known as the
inference in Bayesian network.

Reviewing example 1.1, suppose W becomes evidence
variable which is observed the fact that the grass is wet, so,
W has value 1. There is request for answering the question:
how to determine which cause (sprinkler or rain) is more
possible for wet grass. Hence, we will calculate two
posterior probabilities of S (=1) and R (=1) in condition W
(=1). These probabilities are also called explanations for W.

> P(C,R=1SW=1)

P(R=1|W =1) =52 =0.581
D P(C,RSW=1)
D P(C,RS=1W=1)
P(S=1|W=1) =& =0.614

Y P(CC,RSW=1)

Because of P(R=1/W=1) < P(S=1/W=1), it is concluded that
sprinkler is the most likely cause of wet grass. Note that two
above formulas which are also variants of Bayesian rule (see
formula 1.1) will be surveyed more carefully in the
“Bayesian network inference” section.

1.4. Markov condition and Markov equivalence

The inference in BN becomes complex and ineffective when
the size of BN is large. Suppose BN has n binary nodes. In the
worst case, each node has n-1 parents, thus, the joint
probability has n*2n entries. There is a boom of CPT (s).
There is a restrictive criterion so-called Markov condition
that makes the relationships (also CPT) among nodes
simpler.

Given Bayesian network (G, P) and three sets of nodes:

A=A{X,..,, Xj}, B={Xx,..., Xi} and C={Xn,..., Xn}:

- The denotation Ip(A,B) or Ic(4,B) indicates that A and B
are independent.

- The denotation Ip(A,B/C ) or I¢(A,B/C ) indicates that A
and B conditional independent given C.

Let (G, P) be Bayesian network, Markov condition is stated
that every node X is conditional independent from its non-
descendants given its parent. In other word node X is only
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Dependent on its previous nodes (directed parents).

VX e E, Ip(X, Nx | PAx)

Where E is the set of edges in G, Nx and PAx are set of non-
descendants of X and parents of X, respectively.

@ (b)
Figure 1.3: Example about Markov condition: (a) satisfy, (b)
not satisfy

Because inference and structure learning algorithms are
based on Markov condition, please pay attention to it.

Suppose Bayesian (G, P) satisfies Markov condition, it is
necessary to find out or check whether a node (or a set of
nodes) Z that separates a node (or a set of nodes) X from
another node (or a set of nodes) Y. It means that whether
there is Ip(X, Y | Z). In this case, X and Y are called d-
separated by Z.

There are some important concepts that constitute the d-
separation concept:

The chain X— Z - Yor X Z — Yis called serial path.

The chain X~ Z — Yis called convergent.

The chain X — Z - Yis called divergent.

The chain X-Z-Y is called uncoupled chain if X and Y aren’t
adjacent.

Of course, serial path, convergent path and divergent path
are uncoupled chain.
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Figure 1.4: Serial path (a), convergent path (b), divergent path (c), and uncoupled chain (d).

Let X, Y and Z be sets of nodes where X, Y, Zc V. Given the There is an intermediate node M on p so that:
chain p between X and Y, p is blocked by Z if and only if one

of two conditions is satisfied: M ¢ Z and all descendants of M ¢ Z

There is an intermediate node M € Z on p so that all edges on All edges op p incident to M are convergent.

p incident to M are serial or divergent at M.

(a (b)

Figure 1.5: The chain X-Y-Z-Win (a) is blocked by {Y, Z} because edges incident to Y are divergent at Y.

The chain X-Y-Z-W-T in (b) is blocked by {Z W} because
there is such a node Y on chain that Y ¢ {Z, W}, its descendant
M ¢ {Z, W}, and edges incident to Y are convergentat Y.

X and Y are d-separated by Z if all chains between X and Y are
blocked by Z. Z is also called a d-separation of G.
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Figure 1.6: { Xy, X2} is d-separated from { Xs, Xe} by {Xs, Xa}.

BN (s) which have the same set of nodes are Markov
equivalent if and only if they have same d-separations. In
other words, BN (s) that are Markov equivalent have the
same independences. Given G:=(V, E1) and Gz=(V, E2), we

Have:
VAB,CQV,IQ(A,B|C):>IGZ(A,B|C)

Where 4, B, C are mutually disjoint sub-set of V. Note that G:
and Gz must be DAG and satisfy Markov condition.

The goal of giving “Markov equivalent” concept is to
represent BN (s) that have the same structure and joint
probability. So the representation of such BN (s) is called
Markov equivalent class which is also a Bayesian network. In
conclusion, Markov equivalence divides all DAG (or BN) into
disjoint Markov equivalent classes. In practice, Markov
equivalent class is often find out or surveyed instead of
considering many BN (s).

2.0 Bayesian network inference
2.1. Simple inference

The essence of Bayesian reference is to compute the
posterior probabilities of nodes given evidences. Note that
evidences or conditions are also nodes which are observed
and have concrete values. Back example 1.1 “wet grass”. The
posterior probability of R = 1 (rain) given W =1 (wet grass)
is the ratio of the marginal probability of R, W over C, S to
the marginal probability of W over C, R, S.

P(R=1|W=1)= P(R=1W=1) _ cZS;P(C, R=1SW=1)
V=D > PCRSW=)
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Let V={Xi1, X,... X} be a whole set of nodes. Let D={Xn, X, ...,
Xn} be a set of evidences, Dc V. Let d=(xm, Xu,..., Xxn} be the
instantiation of D. In general case, the marginal probability
of Xi=xk is:

P(X,=X,D=d)= Y P(X,, X, X s 0y X))

V{X,.D}

Where P(X1, Xz,..., Xn) is the global joint probability.
The marginal probability of D = d is:

P(D=d)=> P(X,, X, d,, X,)

The probability of Xk = k given D = d is:

v P ZP(K,)(Z,...)&,...,CL...)(H)
RX, =X, |D=d) = X=X D=0) v o
PD=0d) > PO XKool X,)

The above formula is the basic idea of simple inference. Note
that it is also a variant of Bayesian rule (see formula 1.1).
But the cost of computing it based on marginal probabilities
is very high because there are a huge number of numeric
operations such as additions and multiplications in
computation expression. If the joint probability has many
terms, brute force method for determining combinations of
such operations is impossible. There are three main
approaches that improve this computation:

Taking advantage of Markov condition: Pearl’s message
propagation [1] [4] is well-known algorithm.

OR-gate model inference [1] which simulates OR-gate
electronic circuit.

Reducing the amount of numeric operations computed in
marginal probability. Optimal factoring [1] is the well-
known technique.

2.2. Pearl’s message propagation algorithm

Suppose Bayesian network is DAG G=(E, V) which is a tree
having only one root. Given a set of evidence nodes Dc V;
every node in D has concrete value. Let Dy is the sub-set of D
including X and descendants of X and let Nx be the sub-set of
D including X and non-descendant of X. Let Cxand PAx be
children and parents of X, respectively. Let R be root node.
Let O be evidence node, O € D.
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Figure 2.1: X, DX and NX. Note that NX is green and DX is
red.

The essence of inference is to compute the posterior
probability P(X/D) for every X. We have:

P(X |D)=P(X | D,,N,)

_ P(D,,N, | X)P(X)

~ P(D,.N,)

_ P(D, | X)P(N, | X)P(X)

- P(D,.N,)

P(N, | X)P(X)
P(N,)

=aP(D, | X)P(X|N,)

(duetoBayesrule)

P(N,)

=P(D, | X) 0.0

P(N
Where a = # is the constant independent from X.
P(D«,Ny)

Let A(X) and m(X) be P(Dx/X) and P(X/Nx), respectively.

P(X/D) = aA(X) m(X) (22)

The A(X) and m(X) are called A value and m value of X,
respectively.

For each child Y of X, let Av(X) be A message that connects X
and Y. Note that Ay(X) is conditional probability of Dy given X.

1, (X)=P(D, | X)=) P, I)PY|X)=) | MPY|X) @3

For each parent Z of X, let mx(Z) be m message that connects Z
and X. Note that nx(Z) is conditional probability of X given
Nx.

(ISSN: 2276-6324)
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Px(2)=P(Z|Ny)
=P(Z|N,, nDK) (whereC, -{ X} istheset of Z'schildrenexcept X)
KeC, { X}

P(N;, (D« 12)P(2)
KeC, o X}

=—————2 -~ (Bayesrule)
PN, [1Dy)
KeC, X}
P(N;12)P( (D« 12)P(2)
KeCz {X} e . .
= (becauseZ and C, —{ X} areconditiond independert given Z)
P(N;. [1D«) ‘

KeC, +{X}

P(ZIN,)P(N)P( (D¢ 12)P(2)
KeC, o

X}

P(Z)P(N, hDK)

KeC, X}

P(N)
=P(ZIN,)P( (D, |Z)— 22
(ZIN:) (KEQ{X) | )P(sz ﬂDK)

KeC, X}

=kP(Z|N,)P( ﬂDK |Z) (wherek = 5 P(N,) istheconstantindependert from X, Z)
KeC, X}

(N2, [1Dx)

KeC, -{X}

=kp(2) ]_[P(DK |Z) (becauseX'schildrenaremutuallyindependert)
C;{X}

K

=kp(2) []«@

KeC, X}

~p(2Z) Hl «(2) (24)

KeCp~{X}

Don’t worry about 7x(Z) is proportioned to p(z) [ . (2)
KeC,-{X}

by removing constant k because the posterior probability

P(X/D) itself is also proportioned to A(X) and n(X) via

constant a. These constants will be eliminated when P(X/D)

is normalized. Now we have:

Value A(X) = P(Dx/X)

Messagel , (X) =P(D, | X)=>_I (Y)P(Y | X) for each Ye C,
Y

Value 7 (X) = P(X/Nx)

Messagepx (2)=P(Z|N,)=p(2) HI (2 for each Z € PAx.

KeCy{ X}

The A and m values are updated according to A and «
messages. Whenever evidence O €D occurs, Pearl’s
algorithm propagates downwards m message and
propagates upwards A message in order to update A value
and m value of each variable X so that the posterior
probability P(X/D) can be computed. The process of
upwards-downwards propagation spreads over all variables
of network.
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Figure 2.2: Pearl propagation algorithm (X is focused node).

Please pay attention to following notices when updating A
value and m value at certain variable X:
If Xe D and suppose X’s instantiation (value) is x then:

A(X=x) = P(x/x)= 1 due to X € Dx and Markov condition. So A(X
#x)=0

7 (X=x) = P(x/x)= 1 due to X € Nx and Markov condition. So
X=x)=0

P(X=x/D) = 1 and P(X = x/D) = 0.

If X¢ D and X is leaf then:

AX)=P(@A|X)=1dueto Dx=0
m (X) is computed as if X were intermediate variable.

P(X|D)= an(X)

If X¢ D and X is root then:

A (X) is computed as if X were intermediate variable.
7 (X)=P(X|@)=P(X)

P(X/D)= aA(X)P(X)

If X¢ D and X is intermediate variable then:

I(X)=P(D, IX)=P([) D, IX)=]] P(D,IX)=]] I, (X)

(Because X’s children are mutually independent)

P(X)=P(X|IN,)=2 P(X|Z)P(Z|N,)=D2 P(X|Z)p,(2)

z

Where Z is parent of X.
P(X|D)= aA(X)m(X)

Of Mathematics and Statistics
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Pseudo-code for Pearl’s algorithm shown below includes
three functions:

Function “void init” initialize 7 value for every node. At that
time the set of evidence nodes D is empty.

Function “void update” is executed whenever evidence node
0 occurs. This function adds O to set D, propagates upwards
A message over all parents of O by calling function “void
propagate_up”, and propagates down m message over all
children of O by calling function “void propagate_down”.
Function “void propagate_up_A message” computes A value
and posterior probability of current node, and continues to
propagate upwards and downwards A, m messages by calling
itself and function “void propagate_ down_m_message”.
Process of propagation stops when there is no node to be
propagated.

Function “void propagate_down_m_message” computes w
value and posterior probability of current node, and
continues to propagate downwards m message by calling
itself. Process of propagation stops when there is no node to
be propagated.

void init(G, D)

{

D=g;

foreach XeV

{

AX) =1

//duetoD =0

for each parent Z of X
//propagate up A message
MZ)=1;

//duetoD =0

}

P(R[D) = P(R);

//posterior probability of root node
n(R) = P(R);

// wvalue

for each child K of R

//browse root’s children
propagate_up_m_message(R, K);
}

void update(0, o)

{

D=DuUO0

A(0=0) = (0=0) = P(0O=0/D) = 1;
//dueto0eD

A0+ 0)=m(0+0)=P(0=+0/D)=1;
//dueto0¢D

ifO+ Rand O’s parentZ ¢ D
// Oisn’t root and parent of O doesn’t belong to D
propagate_up_A_message (0, Z);

for each child K of O such that K¢ D
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//browse O’s children propagate_up_m_message(0, K);}

void propagate_up_A_message(Y, X)
{

1, (X)=D 1 ()P(Y|X);

//Y propagate upwards A message
LX) =TI (X);

YeCy
//update A value
P(X|D)= aA(X)m(X);
//compute posterior probability of X
normalize P(X|D);
//eliminate constant a

if X# Rand X’s parent Z ¢ D
propagate_up_A_message(X, Z);

for each child K of X such that K+ Y and K¢ D
//browse O’s children propagate_up_m_message(X, K);
}

void propagate_down_mn_message(Z, X)

z |P(X:l) P(X=0)
1| 07 03
o| o2 o8

(ISSN: 2276-6324) Page |8

{
P.(2)=p@) []1«(@);

KeC, { X}

//Y propagate downwards

message
p(X)= z P(X|2)p,(2); //update T value

P(X|D)= aA(X)m(X);
//compute posterior probability of X normalize P(X|D);
//eliminate constant a

for each child K of X such that K¢ D //browse O’s children
propagate_up_m_message(X, K);
}

Example 2.1: Given Bayesian network shown in figure 2.3,
suppose evidence X has value 1. Hence, we need to compute
posterior probabilities of T, Y, Z in condition X=1. Firstly,
function “void init” is called to initialize network.

PZ=1) PEZ=0)
0.6 04

z |P(Y:1) P(Y=0)
1| 06 04
o| 03 07

X | P(T=1) P(T=0)
1| 09 o1
o| 04 06

Figure 2.3: Bayesian network with CPT (s)

Function init(G,D) is executed:
D=g

AMZ=1)=A(Z=0)=1
AMX=D=AX=0)=1
AMY=1)=AMY=0)=1
MT=1)=A(T=0)=1

Ax(Z=1) = x(2=0) = 1
A(Z=1) = Av(2=0) = 1

Ar(X=1) = Ar(X=0) = 1

P(Z=1/d) = P(Z=1) = 0.6. Note that let d be instantiation of D
P(Z=0/d) = P(Z=0) = 0.4

n(Z=1)=P(Z=1) = 0.6

m(Z=0) = P(Z=0) = 0.4

Calling propagate_down_m_message(Z, X)
Calling propagate_down_m_message(Z, Y)
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Then, function propagate_down_n_message(Z, X) is executed:
nx(Z=1)=n(Z=1) Ax(Z=1)=1*0.6=0.6
x(Z=0)= n(Z=0) Ax(Z=0)=1%0.4=0.4

n(X=1) = P(X=1/Z=1) nx(Z=1) + P(X=1/Z=0) nx(2=0) = 0.7%0.6
+0.2%0.4=0.5
n(X=0) = P(X=0/Z=1) mx(Z=1) + P(X=0/Z=0) mx(Z=0) = 0.3%0.6
+0.8%0.4=0.5

P(X=1)=aA(X=1) n(X=1)=al*0.5=a0.5
P(X=0) = a A\(X = 0) n(X=0)=al*0.5= a0.5

a0.5

a05+a05
a05

a05+a05

Calling propagate_down_m_message(X, T)

Then, function propagate_down_m_message(X, T) is executed:
nr(X=1)=n(X=1) =0.5

nr(X=0)= n(X=0) =0.5

P(X=1) =

P(X=0) =

n(T=1) = P(T=1/X=1) mr(X=1) + P(T=1/X=0)mr(X=0) = 0.9%0.5
+ 0.4%0.5=0.65

n(T=0) = P(T=0/X=1) mr(X=1) + P(T=0/X=0)mr(X=0) = 0.1*0.5
+ 0.6*0.5= 0.4

P(X=1) P(X=0)
05 05

0.62

Of Mathematics and Statistics

P(T=1) P(T=0)
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P(T=1) =a A(T = 1)n(T=1) = a1*0.65= a0.65
P(T=0) = a A(T = 0)n(T=0) = a1*0.4= a0.4

_a065  _ 0.62
a0.65+a04

_ 204 a4
a0.65+a04

Then function propagate_down_mn_message(Z, Y) is executed:
ny(Z=1)= n(Z=1)Av(Z=1) =1%0.6=0.6
y(Z=0)= n(Z=0)Av(Z=0)=1*0.4=0.4

P(T=1) =

P(T=0) =

n(Y=1) = P(Y=1/Z=1)nx(Z=1) + P(Y=1/Z=0)nx(2=0) = 0.6*0.6 +
0.3%0.3 = 0.45
n(Y=0) = P(Y=0/Z=1)mx(Z=1) + P(Y=0/Z=0)x(2=0) = 0.3*0.4 +
0.8%0.7 = 0.68

P(Y=1) = aA(Y = )r(Y=1) = al*0.45= a0.45
P(Y=0) = aA(Y = 0)m(Y=0) = a1*0.68= a0.68

a0.45

a045+2068
a0.68

a045+a068

P(Y=1) =

P(Y=0) =

The initialized Bayesian network is shown below:

P(z=1) P(Z=0)
06 04

P(v=1) P(Y=0)
04 06

0.38

Figure 2.4: Initialized Bayesian network

When X becomes evidence and gains value 1, the function
update(X, 1) is called:

D =D u X={X}

Because d is instantiation of D, we have d = {X=1}

A(X=1) = m(X=1)=P(X=1/d)=1

A(X=0) = m(X=0)=P(X=0/d)=0

Calling propagate_up_A_message(X, Z)

Calling propagate_down_m_message (X, T)

Then, function propagate_up_A_message(X, Z) is executed:
M(Z=1) = M(X=1)P(X=1/Z=1) + A(X=0)P(X=0/Z=1) = 1*0.7 +
0%0.3=0.7

MZ=1) = Ax(Z=1)Av(Z=1) = 0.7*1 = 0.7

P(Z=1/d) = aA(Z=1)n(Z=1)= a0.7%0.6 = a0.42
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m(Z=0) = A(X=1)P(X=1/Z=0) + A(X=0)P(X=0/Z=0) = 1%0.2 +
0%0.8=0.2

A(Z=0) = Ax(Z=0)Av(Z=0) = 0.2*1 = 0.2

P(Z=0/d) = aA(Z=0) m(Z=0)= a0.2*0.4 = a0.08

pz=1/d) = — 294 _
a042+a0.08
a0.08
P(Z=0|d) = ——  ==0.16
(2=0/d) a0.42+a0.08

Calling propagate_down_m_message(Z, Y)

Then, function propagate_down_m_message
executed:

Z v is

mv(Z=1)= m(Z=1) Av(Z=1) =1*0.6=0.6
1v(2=0)= m(2=0) Av(Z=0)=1%0.4=0.4

n(Y=1) = P(Y=1/Z=1) nx(Z=1) + P(Y=1/Z=0) nx(Z=0) = 0.6%0.6
+0.3%0.4 = 0.48

n(Y=0) = P(Y=0/Z=1) nx(Z=1) + P(Y=0/Z=0) mx(Z=0) = 0.3%0.6
+0.8%0.4=0.5

P(Y=1)=aA(Y=1)n(Y=1) = a1*0.48= a0.48
P(Y=0) = a A(Y = 0) n(Y=0) = a1*0.5= a0.5

PX=1) P(X=0)
1 0

0.9

P(T=1) P(T=0)
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P(Y=1) = _abs  _,
a048+a0.5

P(Y=0) = _ 805 g
a048+a05

Then function propagate_down_n_message(X, T) is executed
nr(X=1)=n(X=1) =1
nr(X=0)= n(X=0) =0

n(T=1) = P(T=1/X=1) mr(X=1) + P(T=1/X=0) r(X=0) = 0.9%1 +
0.4%0=0.9
n(T=0) = P(T=0/X=1) mr(X=1) + P(T=0/X=0) mr(X=0) = 0.1*1 +
0.6%0= 0.1

P(T=1) =a A(T =1) n(T=1) = a1*0.9= 0.9
P(T=0) = a A(T = 0) n(T=0) = a1*0.1= a0.1

pr=1)= —299 __g
a09+a0.1

pr=0y= — 291 __g
a09+a0.1

Finally, all posterior probabilities are computed as in
following figure

PZ=1) P(Z=0)
0.84 0.16

P(Y=1) P(Y=0)
049 051

Figure 2.4: All posterior probabilities are computed after running Pearl algorithm (X is evidence)

2.3. OR-gate inference

In OR-gate electric circuit, the output value becomes TRUE if
there is at least one of inputs being TRUE. Suppose every
node is binary, OR-gate inference [1] in Bayesian network
simulates such circuit based on three assumptions:

Cause inhibition: Given a cause-effect relationship denoted
by edge X Y, there is a factor / that inhibits X from causing
Y. Factor [ is called inhibition of X. That the inhibition I is
turned off is the prerequisite of X causing Y.

| =0< | turned OFF
| =1< | turnedON

How to Cite this Article: Loc Nguyen, "Overview of Bayesian Network" Science Journal Of Mathematics and Statistics, Volume 2013 (2013), Article ID §ms-105, 22

Pages, doi: 10.7237/§ms/105



Science Journal Of Mathematics and Statistics

Inhibition  independence: Inhibitions are mutually
independent. For example inhibition I of X; is independent
from inhibition Iz of Xz.

OR condition: Suppose we have a set of cause-effect
relationships in which Yis the effect of many causes X1, X,...,
Xn (see following figure). Let /i be the inhibition of Xi. The
effect Y can not happen (Y=0) if at least one of X; is equal 0 or
one of inhibitions is ON:

3i:X, =0vl =1=Y=0

Figure 2.4: Cause-effect relationships.

Suppose we have n causes X1, Xz,.., Xn and one result Y.
According to “cause inhibition” and “inhibition independence”
assumptions, let I; be the inhibition of Xi. Let A; be dummy

(ISSN: 2276-6324)
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variable so that A; is ON (=1) if Xi is equal to 1 and [; is OFF
(=0).

P(4i=ON | Xi=1, Ii=OFF) = 1
P(Ai=ON | Xi=1,1i=ON) = 0
P(Ai=ON | Xi=0, Ii=OFF) = 0
P(Ai=ON | Xi=0, i=ON) = 0

P(Ai = OFF | Xi=1, Ii=OFF) = 0
P(A; = OFF | Xi=1, I;=ON) = 1
P(A; = OFF | Xi=0, I;=OFF) = 1
P(Ai = OFF | Xi=0, I;=ON) = 1

Applying “OR condition”, the condition probability of Y is
equal 0 (Y never happens) if at least one A; is ON. It means
that Y happens (Y=1) if all 4; (s) are ON.

P(Y=0/3Ai=ON) =0
P(Y=0| Y Ai=OFF) = 1
P(Y=1/ Y Ai=ON) = 1
P(Y=1|3 A=0FF) = 0

P(Ii=ON) = 1 - P(X=1)

P(Y =0|3A =ON)=0
P(Y =0|VA =OFF) =1

P(A=ON|X =11 =0FF)=1
OtherwiseP(A =ON|...)=0

Figure 2.5: OR-gate model.

Now the strength of each cause-effect relationship Xi - Yis
quantified by the CPT P(Y/X:). Suppose causes (X1, Xz,....X;...,
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Xn) become evidences having values (xs, Xz,..., X;,..., Xn). Let
P(Xi=1) = pi be the probability of X; = 1. The probability of Xi
‘s inhibition is the inverse:

P(li=ON) =1 - P(Xi=1)

Let O be the set of such i that Xi = 1.

VieO, X =1

The goal of inference is to determine the posterior
probability P(Y| X3, Xz,...,X;..., Xn). We have:

P(Y =0] X, =%, X, = X))

(Because A, isonly dependent on X )

=[1P(A =OFF X, =x)

(Becausethat any A, isequal ON causes the conditional probability P(Y =0|A, = ON) =0,

we just focuson A, = OFF)

=T (P(A =OFF | X, =x,1, =ON)P(l, =ON) + P(A = OFF | X, = x,1, = OFF)P(I, = OFF))
=[1(P(A =OFF | X, =11, =ON)P(I, =ON) + P(A = OFF | X, =1,1, = OFF)P(l, = OFF))
+]J(P(A =OFF | X, =11, =ON)P(I, = ON) + P(A = OFF | X, =11, = OFF)P(l, = OFF))

=JJaa-PXx)+ OP(X‘))H(l(lf P(X)+1P(X,))

i<0

=[Ja-pPx)

In conclusion, we have
P(Y=0/X,Xz,.., X2) = [ (1= P (X)) @5)

ieO

P(Y=1/X3 Xz, X)=1-[] (1 = P (X ) e

ie O
Where O is the set of such i that Xi = 1.
Example 2.2: Given cause-effect relationship shown in
following figure. Given prior probabilities of causes X1, Xz, X3

are 0.2, 0.5, 0.3, respectively. We need to compute the
conditional probability of effect P(Y=1/X1=1, X2=0, X3=1).

P(X1) = 0.2

P(X2) =05

P(X3) = 0.3

(ISSN: 2276-6324) Page |
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Figure 2.6: OR-gate inference example.

Applying formula 2.6, we have:

P(Y=1] X1=1, X»=0, X3=1) = 1 - (1 - P(X:=1))(1 -P(X3=1)) =1 -
0.8%0.7 = 0.44

2.4. Optimal factoring

The basic idea of this technique is to reduce the amount of
numeric operations by changing the order of combinations
of such operations. Back example 1.1, given joint probability
P(C, R S, W)=P(C)*P(S)*P(R/C)*P(W|R,S), the marginal
probability of R = 1 is factorized as below:

P(R=1W=1) = P(C)P(SP(R=1|C)PW =1|R=1,5)

Because each binary variable has 2 values, there are 22
combinations of C and S. Each product has 3 multiplications.
So the total number of required multiplications is 3*22 = 12.
Now the ordering of expression is changed by the
factorization as below:

P(R=1W=1) =) PO)P(R=1|C)> P(SPW=1|R=1S)

The inner sum of products Z P(SPW =1|R=1S) has
S

1*21=2 multiplications. Although the outer sum of products
Z P(C)P(R=1]| C)Z (...) contains 4 variables, it has 2*21= 4
(e} S

multiplications because expressions which don’t relate to
variable S such as P(C) and P(R=1/C) are taken out the inner
sum of products. So the total number of required
multiplications is 4+2=6. Six multiplications are saved.

It is easy to recognize the best ordering of expressions
which produces the minimal required multiplications if the
number of variables is small. How we can do that in case of
many variables. The answer relates to the optimal factoring
problem.

Given F = (V, S, Q) is defined as the triple consisting of [1, pp.
163]:

A set of n nodes (or variables) V={Xj, Xz,..., Xn}

A set of m sub-sets S = {Sq), S2),..., Simy} where S;y c V
AtargetsetQcV

The factoring a of S is a binary tree satisfying three following
condition [1, pp.164]:

All and only member Sy, of S are leaves.

The parent of nodes Sy and Sy are denoted Sy U j

Note that S corresponds to operands of marginal probability
and a corresponds with the factorization of marginal
probability.
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The joint probability is P(ZX,Y,T) = P(Z)P(X/Z)P(Y|Z)P(T/X).

Example 2.3: Like example 2.1, let Z, X, Y, T be nodes of Suppose X is evidence, we need to compute the posterior
Bayesian network shown in following figure. conditional probability P(Z=1/X=1). The marginal probability
over Z, X shown below is the sum of products which will be
optimized:
e PZ=1X=1=3 P@Z=1P(X =1|Z=DP(Y |Z=DP(T | X =1)
Y. T

The factoring instance F(V, S, Q) is defined as below:
V={Z X Y, T}
S={Sw={2}, S={X, Z}, Sy={Y, Z}, Siy={T X}}

Q={Z X}
Suppose factoring a1, az correspond to two factorizations of

marginal probability P(Z=1,X=1).
,*P(Z=D)P(X=1|Z=1> (P(Y|Z=1)D P(T|X =1

a,~Y P(Z=)P(X =1|Z =D)P(Y |Z =)P(T | X =1)

@ (b)
Figure 2.7: (a) Factoring az and (b) Factoring az

Given F, the cost of factoring a denoted costa«(F) is two All non-leave nodes are determined according to formula:
following steps:
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Suuyp =Sy uSpH-Wuujpy where Wyup= {we Q and w ¢ Sy
forallkeglu]}

The cost of each node is computed according to formula:

Forleaf nodes:  costa(S) = 0,j=1,_m

For non-leaf nodes: cost«(SyU j})=costa(S1) + costa(S)) + 25°!
Where /.| denotes the cardinality of the set.

The cost of factoring a: cost«(F)= costa(S(,..m}). The less this
cost is, the better binary tree is.

Applying optimal factoring problem into Bayesian inference,
the set of nodes V in F corresponds with variables in BN and
the tree a corresponds with the ordering of multiplications
in marginal probability. The cost of factoring instance
cost«(F) is equal to the number of multiplications. The
problem becomes easy when we find out the best binary
tree @ having the least cost.(F) and compute the marginal
probability with the same ordering of multiplications to this
tree.

Back example 2.3, the cost of factoring a; is computed as
below:

costa1(5{1,2,3,4}) = costa1(Sp,2y) + costa(Sp4) = (0+0+2°) +
(0+0+22) =5
costaz(5{1,2,3,4}) = costa(Sese) + costa(Sim) + 22 =
costa1(Sz34) + 0 + 22
= costa1(Siz4) + costai(Sizy) + 22 + 22
=(0+0+2)+0+22+22=10

Because costa1(5{1,2,3,4}) is lesser than costaz(5{1,2,3,4}), the
following ordering of multiplications is chosen:

PZ=1X=0)=PZ=DP(X=1|Z=D> (A(Y|Z=D3 P(T|X =)

3. Parameter learning
3.1. Beta function and augmented Bayesian network

There is a family of PDF which quantifies and updates the
strength of conditional dependencies among nodes by
natural way is called beta density function, denoted as S(f; q,
b) or Beta(f; a, b) with parameters a, b, N=a+b where a, b
should be integer number > 0

_ F(N) a-lpq b-1
b(f)_—r(a)r(b)f (1- f)
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Beta(l,1) Beta(2,2) Beta(3.2) Beta(19,39)

Figure 3.1: Beta functions

It means that, there are “a” successful outcomes (for
example, f =1) in “a+b” trials. Higher value of “a” is, higher
ratio of success is, so, the graph leans forward right. Higher
value of “a+b” is, the more the mass is concentrate around
a/(a+b) and the more narrow the graph is. Definition of beta
function is based on gamma function described below:

I (x) = th’le"dt 3.1
0
The integral will converges if x>0, at that time,

I'(x) = (x—1!. Of course, we have Lix+D) X (3:2)
I'(x)
1
From formula 3.1, _[ f@- f)°df :W 3.3)
3 Ia+b+2)

Suppose there is one binary variable X in network and the
probability distribution of X is considered as relative
frequency having values in [0, 1] which is the range of
variable F. We add a dummy variable F (whose space
consists of numbers in [0, 1], of course) which acts as the
parent of X and has a beta density function S(f; a, b), so as to:

P(X=1]f) = f, where f denotes values of F
X and F constitute a simple network which is referred as

augmented BN. So X is referred as real variable (hypothesis)
opposite to dummy variable.

: —~(x)
B(f; a,b) and f have P(X=1|f)=f
space [0,1]

Figure 3.2: The simple augmented BN with only one
hypothesis node X

Obviously, P(X=1) = E(F) where E(F) is the expectation of F
Proof, owing to the law of total probability
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P(X =1):jp(x =1| f)b(f)df :j fb (f)df = E(F)

Due to Fis beta function,

E(F) =%,so, Pr(X =1) = % 34)

Proof,

E(F)= [ fo(f)df = f r(z()?zb)fﬂ(l_ f)*f

__N) jfa(l—f)”lz [(N) T@+drb+D y eotormuls.3)
r@rib); r@re rN+3

=% (applyingormul 8.2)

The ultimate purpose of Bayesian inference is to consolidate
a hypothesis (namely, variable) by collecting evidences.
Suppose we perform M trials of a random process, the

outcome of uth trial is denoted X considered as evidence
variable whose probability P(X® = 1 [ f) = f. So, all X() are
conditionally dependent on F. The probability of variable X,
P(X=1) is learned by these evidences.

We denote the vector of all evidences as D = (X(), X(,..., X(M)
which is also called the sample of size M. Given this sample,
B(f) is called the prior density function, and P(X(*) = 1) = a/N
(due to formula 3.1) is called prior probability of X(. It is
necessary to determine the posterior density function B(f|D)
and the posterior probability of X, namely P(X/D). The nature
of this process is the parameter learning. Note that P(X/D) is
referred as P(X(M+1) | D).

B(f; a,b) and f
have space [0,1]

POKf)=f

P(X|f)=f P(XM|f)=f

Figure 3.3: The sample D=(X(), X(,..., X)) size of M

We only surveyed in the case of binomial sample, in other
words, D having binomial distribution is called binomial
sample and the network in figure 3 becomes a binomial
augmented BN. Then, suppose s is the number of all
evidences XV which have value 1 (success), otherwise, t is
the number of all evidences X0? which have value 0 (failed).
Of course, s + t= M.
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Owing the law of total probability, we have

E(f°(- f)‘):jfsa— f)'b(f)df

1

_ s(1_ £\t F(N) alrq  f£\bl ;
= I fs@-f) —F(a)l“(b)f @-f)*df (applyingormula3.1)

__T(N)
- T@r(b)
_ T(N) T(a+9r(b+t)
" I(a)(b) [(@a+b+s+t)
_ T(N) T(a+9r(b+t)
T(N+M) [(aI(b)

j fost(1— f)> i 3.5)
0

(duetoformul &3.3)

(duetos+t=M)
And,

P(D):jpruf)b(f)df:jﬁp(xi | f)b(f)df

o &
(3.6)

=jfs(l—f)sb(f)df=E(fs(1—f)‘), duao]M‘[P(xi [f)=f:(-f)

3.2. Parameter learning

The essence of parameter learning is to compute the
posterior density function [1]. Now, we need to compute the
posterior density function pS(f/D) and the posterior
probability P(X=1/D). It is essential to determine the
probability distribution of X.

P(D] f)b(f)
P(D)
=% (duetoP(le):l;[P(X‘ | f)=1f*@-f)" and apply formula3.6)
T(N)
C(@r(b)

I(N) T(a+9r(b+t)
I'(N+M) T(@rb)
__ T(N+M)
T T(a+9T(b+1)

b(f |D)=

(Bayeslaw)
3.7

foa- f) fa- £y

(apply formula3.1,3.5)

fod- £ =b(f;a+sb+t)

Then the posterior density function is S(f; a+s, b+t) where
the prior density function is B(f; a, b). According to formula
3.4, the posterior probability:

P(X=1/D) = E(f(fID)) = —r> = 8TS g

a+rs+b+t N+M

In general, you should merely engrave the formula 3.1, 3.4,
3.7, 3.8 and the way to recognize prior density function,
prior probability of X and posterior density function,
posterior probability of X, respectively on your memory.
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3.3. Expanding augmented BN with more than one
hypothesis node

X1
P(X:=1) P(X1=0) 1

1/2 1/2 (a)

B(fu; 1, 1) (b)

Page |
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Suppose we have a BN with two binary random variables
and there is conditional dependence assertion between
these nodes. See the network and CPT (s) in the figure below

P(X2=1)
0 1/2
B(fa; 1, 1)
B(f2; 1, 1)

Figure 3.4: BN (a) and expended augmented BN (b)

For every node (variable) X;, we add dummy parent nodes to
Xi, obeying two ways below:

If Xi has no parent (not conditionally dependent on any
others), we add only one dummy variable denoted Fi; having
the probability density function B(fi; ai1, biz) so as to:

P(Xi=1/fi1)= fu

If Xi has a set of ki parents and each parent paa (Izﬂi) is
binary, we add a set of ¢i=2k; dummy variables F; = {fi, fiz,...,
fiq }, in turn, instantiations of parents PAi= {paii, paiz, pais,...,
pa.}. In other words, ¢ denotes the number of
instantiations of the parents PAi. We have P(Xi=1/pay, fi,...,
(N;) 4 b1

fiew T )=fi. where b(f )=——-"o % (1-f )"
’ " I'(a)(b) '
All fi have no parent and are mutually independent, so, B(fi1,
fizew §.) = B(fi) B(fi2)... B( T, ). Besides this local parameter

independence, we have the global parameter independence
if reviewing all variables X; s, such below:

B(F1, F3,..., Fn)= B(f11, f12,..., fi% )= B(fi1) B(fiz)... B( ficm )

All variables X; and their dummy variables form the
expended augmented BN representing the trust BN in figure
4. In the trust BN, the conditional probability of variable X;

with the instantiation of its parent pa,, in other words, the

[j*= conditional distribution is given by P(Xi=1/ pa,=1) =

E(Fy)= A (3.8), that’s to say the expected value of Fj;.
i

1

P(X, =1|pa, =1) = [..[P(X, =1| pa, =1, f,..., f )b (f,)..b(f,)df ..df
Proof’(‘mu)H(.m.} )b (f,).b(f,.) ‘

(due to F; (s) are mutually independen t, P(X, =1|pa,, =1f,,..f )=
PX, =1l pa, =1 f) = f,)

ot

f,b(f,).b(f,)df ,..of, = E(F,)

Suppose we perform M trials of random process, the
outcome of it" trial which is BN like figure 4 is represented as

W
Xl

a random vector X =] ..
W

xn

variables in network. X is also called evidence vector (or
evidence, briefly). M trials constitute the sample of size M
which is the set of random vectors denoted as D={X(1), X(2),..,,
XM}, D is also called evidence matrix. We review only in case
of binomial sample; it means that D is the binomial BN
sample of size M. For example, this sample corresponding to
the network in figure 4 is showed below:

containing all hypothesis
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ool

Figure 3.5: Expanded binomial BN sample of size M

After occurring M trial, the augmented BN was updated and
dummy variables’ density functions and hypothesis
variables’ conditional probabilities changed. We need to
compute the posterior density function B(f;j/D) of each
dummy variable Fj and the posterior condition probability

P(Xi=1] pa; =1, D) of each variable Xi. Note that the samples

X s are mutually independent with all given Fi;. We have,
M [ .

H P(XI(U)lpai’Fi):H (fij)”)(l_ fij)"
u=1 j=1

Where
ciis the number of instances of Xi*) ‘s parents. In binary case,
each Xi (s) parent has two instances/values, namely, 0 and

1.

sij, respective to fij, is the number of all evidences that
variable Xi= 1 and pa;=1

tij, respective to fj is the number of all evidences that
variable X; = 1 and pa, = 0.

We have,

POIF....E)=] [T TPrx® e ) =T TITC) @£, o

=1 u-l =1 4

P(D) =TI TEC," @ 1)) cao

=1 -1

P) =TI (J.TT P(X* Ipa, F)b (F)dF)
=R 1
(due to the law of total probabilit y and the joint probabilit y distributi on)

- H (IH () (A= f,)" b (F)dF,)

Proof,

(applying  formula l_M[] P(X " |pa,F)= 1_1 (f)a-f)H")

-1 [ a- b,

- H H EC(f," (- f,)")
There is the question “how to determine E( fif‘ Q- fij)“‘) ",
Applying formula 3.5, we have:

I'(N, I'(a, +s )I'(b +t
E( fijs‘ (1_ fijtu )) — ( 'J) (all sj) ( 1j |])
LN, +My)  T'(a)I'(b)

Where Nj=aij+bij and Mjj=sij+t;

(3.11)

3.4. Updating posterior density function with multi-
node Bayesian network
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(fij)s‘ (1_ f\j)!“ b(fij) _

b(f; | D)= B 1)) betdf ;g +5,b +t,) 312
Proof,

b(fm|D)=w (Bayeslaw)

U...jP(Dm,FZ ..... Fn)Hb(fJ)deJb(fm)

= P(E) (law of total probability)

(fo)™@= £ {Hj.(fu)i‘ - fi,v)"b(fj)dfi,}b(fm)

ij=mn

TTITEC @ 1))

=1 j-1

(apply formula3.9, 3.10)
_(f)@-f)"b(f,)
E(f,"@-f)™)

Sm tm l—‘(Nmn) a1 b1

. (f)™@= ) m(fm) a-f.)
I'(N,,) T(,+s.,)I(0O, +t.)
I'(N,+M_) I'(a,)'(b,)

(expansionof b(f,,)andapplyingformula3.11to E(f_*(1- f)"))

(N, +M_)
"T(a, +s,)I(b, +t.)
=beta(f,,;a, + Sm:0m +tm)

(f)= 0 £,)

According to formula 3.8 and 3.12,

P(Xi=1] pa, =1, D) = E(Fy) = E(B(fy/D)) =

& *s _ a; +5 (3.13)
a;+s; +b +t, N, +M,

In short, in case of binomial distribution, if we have the
real/trust BN embedded in the expanded augmented
network such as figure 3.4 and each dummy node Fj has a
prior beta distribution B(fi; ai;, bi) and each hypothesis node
Xi has the prior conditional probability

P(Xi=1 pa, =1)=E(ﬁ(ﬁj))=%, the

parameter learning

]
process based on a set of evidences is to update the
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posterior density function pB(fj/D) and the posterior
conditional probability P(Xi=1/ pa, =1,D). Indeed,

b(fij |D)=beta(fij;a1‘j +S|j’b|j +tij) and P(Xi=1/ Pa, =1, E)
g +s
=E(p(fi/D))= ————
(BUfD)) N, M,

Example 3.1: Suppose we have the set of 5 evidences
D={X(W, X(2), X(3), X(4, X(>]} owing to network in figure 3.4

X1 X2
X0 [ xw=1[ X0=1
X® | x@=1] X@=1
XB) | Xi¥=1 | Xo® =1
X® | Xi¥W=1 | X2 =0
X®) | Xi®=0 | X290 =0

Table 3.1: Set of evidences D corresponding to 5 trials (sample
of size5)

o _

! jimplies that

® _
, =1

Note that the first evidence X©® :(
variable Xz2=1 given X1=1 occurs in the first trial. We need to
compute all posterior density functions B(fi:/D), B(f21/D),
B(f22/D) and all conditional probabilities P(X:=1),
P(X2=1/X1=1), P(X>=1/X:=0) from prior density functions

B(fiz; 1,1), B(fz1; 1,1), B(f22; 1,1). In fact,

s11=1+1+1+1+0-4
s21=1+1+1+0+0=3
$22=0+0+0+0+0=0

t11=0+0+0+0+1=1
t21=0+0+0+0+1=1
t21=0+0+0+0+1=1

B(f11/D) = B(f11; ar11+#S11, bar+ti1)= B(f11; 1+4, 1+1)= B(f11, 5, 2)
B(f21/D) = B(f21; azi+Sz1, b21+tz1)= P(fz1; 1+3, 1+1)= B(f11, 4, 2)
B(f22/D) = B(f22; @z2+522, bz2a+t22)= B(f22; 1+0, 1+1)= B(f11; 1, 2)

and P(X:=1), P(X>=1/X1=1), P(X2=1/X1=0) are expectations of
B(f11/D), B(f21/D), B(f22/D). Then,

P(X:=1)= P(X>=1/X1=1)= P(X>=1/X1=0)=
5 _3 _4 2 11
542 7 4+2 3 1+2 3

Network in figure 3.4 changed as follows:
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X1
P(X:=1) P(X1=0) 1| o

5/7 217

B 5, 2) @
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P(X2=1)

0 13

B(fa; 4, 2)

B(f; 1, 2)

Figure 3.6: Updated version of BN (a) and augmented BN (b) in figure 3.4

3.5. Parameter learning in case of data missing

In practice there are some evidences in D such as X® (s)
which lack information and thus, it stimulates the question
“How to update network from data missing”. We must
address this problem by artificial intelligence techniques,
namely, expectation maximization (EM) algorithm - a
famous technique solving estimation of data missing.

Example 3.2: Like above example, we have the set of 5
evidences D={X(1), X, X(3), X(4), X(51} along with network in
figure 4 but the evidences X(?) and X(°) have not data yet.

X1 X2
XO | X®=1 | X,W=1
X@ | X;@=1 | X,@=w?
XO® | X:®=1| X®=1
XA | X@W=1|X¥W=0
XO | X:®=0 | Xo® = ,?

Table 3.2: Set of evidences D (for network in figure 4) with
data missing

As known, sz1, tz1 and szz, tz2 can’t be computed directly, it
means that it is not able to compute directly the posterior
density functions S(f21/D) and B(fz2/D). In evidence X©, vi
must be determined. Obviously, v: obtains one of two values
which is respective to two situations:

X1 =1 and X2(@=1, it is easy to infer that vi=P(X>(2=1/X;(2) =
1)=E(f21)= aﬂb =4

1 21

X1 = 1 and X2(9=0, it is easy to infer that vi=P(X>(9=1/X;(2) =
0)=E(f2r)=—22 =1
a,+Db

22

We split X(@ into two X’@ (s) corresponding to two above
situations in which the probability of occurrence of X>=1
given X:=1 is estimated as % and the probability of
occurrence of X2=0 given X1=1 is also considered as %. We

perform similarly this task for X.

X1 X2
XO [ X @=1 [ D=1
X0 [ X, @=1 | X,®@=1/2
XO [ X, @=1 | X, @ = 1/2
X [ X@=1 | X®=1
X0 [ X,@=1 | X,P=0
X0 [ X, =0 | X,© = 1/2
X0 [ X, O=0 | X,© = 1/2

Table 3.3: New split evidences D’ for network in figure 3.4

S'z1=:|.+1+l=E S :E
So, we have 2 2 and 2 where s72;,
‘ 1 3 , 1
ta=—+1=— te=—
2 2 2

t21, S22, t22 are the counts in D'. Then

B(f21/D)= B(fz1; azi+s’21, bai+t21)= B(fz1;1+5/2, 1+3/2)=
B(F1:7/2,5/2)
B(f22ID)= " B(f22z; Qz2+#522, bz2#t’22)= P(f22,1+1/2, 1+1/2)=
B(f22,3/2,3/2)

P(X2=1] Xi1=1)=E(B(f21/D))= P(X2=0]/ X:1=1)=E(B(f22/D))=
712 7 321
7/12+5/2 12 3/2+3/2 2

If there are more evidences, this task repeated more and
more brings out the EM algorithm [1] [6] having two steps.
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Stepl. We compute s and t; based on the
2 | expected value of given f(f;), su=E(B(fi)) and
ty=1- E(B(fij))- Next, replacing missing data by s’
and t7 . This step is called Expectation step.

Step 2. We determine the posterior density
function fij by computing its parameters aj=a;+s;
and bi=bi+t;. Note that s; and t; are recomputed
absolutely together on occurrence of s’ and t. Terminating
algorithm if the stop condition (for example, the number of
iterations approaches k times) becomes true, otherwise,
reiterating step 1. This step is

called the Maximization step.

ook |k |k|k|X

olr|r|lolo|lo|x

After kth iteration, we have

(k)
. . . +5;
lim Expectation, =lim a("k) il ©
k—o k—o a\j + S|j + b\j +tij

which will approach

a certain limit. Don’t worry about the case of infinite
iterations, we will obtain approximate s’, t; posterior fj if k
is large enough due to certain value of Ikim Expectation,

4. Structure learning

As discussed, DAG (s) that contain the same given nodes V
are Markov equivalent if they satisfy Markov condition and
have the same d-separations. In other words, they entail the
same conditional independences and their joint conditional
probabilities are identical. Let the pattern gp represent
these Markov equivalent DAG (s). Such pattern gp is called
Markov equivalent class. Of course given a set of nodes V,
there are a lot of equivalent classes. Let GP be random
variable whose values are pattern gp. The basic idea of
structure learning approaches is to find out the pattern gp
that satisfy some condition best. Instead of searching many
individual DAG According to given condition, there are two
main learning approaches:

Score-based approach [1]: For each pattern gp € GP, the gp
which gains the maximal scoring criterion score(D,gp) given
training data set D is the best gp. Because the essence of
score-based approach is find out the most likely structure, it
is also called model selection [1] approach.

Constraint-based approach [1]: Given a set of conditional
independences (a set of d-separations), the best gp is the
DAG which satisfy Markov condition over all and only these
conditional independences. Such independences play the
role of the “door latch” for learning algorithm.

Note that in structure learning context, Bayesian network or
pattern gp is mentioned as a DAG.
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4.1. Score-based approach

Given a set of random variables (nodes) V = {Xi, Xz,..., Xu}, let
(G, P) be possible Bayesian network where P is joint
conditional probability density and G=(V, E) is the DAG. Let
(G, F@, b (@) be the augmented BN with equivalent sample

size N where F(G) is augmented variables (nodes) attached
to every nodes in ¥V and b (G) represents beta distributions

for augmented (see section about parameter learning).
Pattern gp also represents Markov equivalent augmented
BN. Scored-based approach has three following steps:

Suppose all augmented BN (s) has the same equivalent
sample size N.

Let ri be the number of possible values of variable X If X; is
binary then ri = 2. Let ¢i be the number of distinct
instantiations of parents of Xi. For example, if Xi and its
parents are binary and Xi have I parents then q: = 2. All
augmented variables Fj; representing the conditional
probability of Xi given instantiation j of its parent are
assigned to uniform distribution according to equivalent
sample size N:

aljk

ng

Given D={X(1), X(2,.., XM} is the training data set size M,
where X is a trial. Note that X(W=(X(";, X(1),...,, X(N,) is a n-
dimension vector which is a outcome (instantiation) of
variable Xi. X("); has the same space to Xi. Each DAG gp which
is connected by variables in V is assigned a value so-called
scoring criterion score(D,gp). This score is the posterior
probability of gp given training data set D.

P(gp)P(D | gp)
P(D)

e (N, " T(a. _
Where P(D | gp) = HH(F(N( +u'3/|”) H (lajj(ka:_r ?.k)

score(D, gp) = P(gp| D) =

)

P(gp) is the prior probability of gp. P(D) is constant.

In practice, score(D,gp) is only dependent on P(D/gp) when
P(D) is ignored and P(gp) is initialized subjectively.

Score(D,gp) :ll[ﬁ( F(Nii) ﬂr(ajk +S.jk)

) @y
=1 j=l F(Nij + Mij) k=1 F(a1jk)
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Which gp gaining maximal score(D,gp) is chosen.

Example 4.1: Suppose there are two variables Xi, X2, we
don’t know exactly their relationship but the training data D
is observed as below:

B(l)(fn;lyl)

B(l)(fn;l,l)

@
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Let gp: be the DAG in which X: is parent of Xz; otherwise let

gpz be the DAG in which X1 and Xz are mutually independent.

Given the sample size is N =4

[3(2)(f11;2,2) B(Z)(le;z,z)

(b)

Figure 4.1: Augmented Bayesian networks of gp: (a) and gp: (b)

We have:

scor€D,gn) ~P(D|gp) =
iy T(ND) @y +s) T + ‘f)))x
TN +M) " @) )
(o TNG) e +) TG +)
TN +M) " @) 1)
(o TNe) @, +,) [ +8),
TN +M2) " @) 1)
—( 4 1(2+9 1“(2+2))X( 2 ra+) 1“(1+3))X( Q2 rE+y F(1+J))
4+6 TQ 1@ "~ TR+ Y IO~ TR+ TQ IO
= nare) =99x10°
1o

$OI'E(D, gp1) ~ P(D | gpz) =

TN T - s TOP )
- C(N® +M® F(a{”) r(b®

11 11 1 11
(L F(ND)  T(@y +s2) TS +18)

C(NZ +MP) " I'(ay r'(by)

—( r@4) Tr(2+4) 1"(2+2))X( r4) r2+2 F(2+4))

T(4+6) T(2 r() r(4+6) Tr(2 r(2)

LOL(A@),.
I'(10)

=( 1190 x 10

Because score(D,gpz) is larger than score(D,gpz), the
equivalent pattern gp: is chosen as Bayesian network
appropriate to training data set.

In above example we recognize that it is difficult to
determine all DAG (s). So the score-based approach becomes
ineffective in case of many variables. The number of DAG (s)
which is surveyed to compute scoring criterion gets huge. It
is impossible to do brute-force searching over DAG (s) space.
There are some heuristic algorithms to reduce whole DAG
(s) space to smaller space so-called candidate set of DAG (s)
obeying some restriction, for example, the prior ordering of
variables. Such heuristic algorithms are classified into
approximate learning. The global score can defined as a
product of local scores:

score(D, gp) = ﬁ score(D, X,, PA)

Where score(D,X;,PA:) is the local score of X; given its parents
PA..

sore (D, X ,,PA)=P(X |PA,,D) = 42)
) s ra s
=1 F(Z': a, + Z s,) I (a,)

Let ™ be the number of distinct instantiations of parents
of Xi

The K2 algorithm tries to find out the pattern DAG gp whose
each variable Xi maximizes local score score(D,X;PA;) instead
of discovering all DAG (s). It means that K2 algorithm finds
out optimal parents PA; of each X.. Note that it expects that
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the global score will be approached by maximizing each
partial local score. K2 algorithm has following steps:

Suppose there is an ordering (Xi, Xz.. Xn). There is no
backward edge, for example, the edge X — X; (if exist) where i
< jis invalid. Let Pre(X:) be the set of previous nodes of X; in
ordering. Let PA; is parents of Xi. K2’s mission is to find out
PA; for every Xi. Firstly, each PA; (s) is set to be empty and
each local score(D,X; PA:) is initialized with such empty PAi.

Each X: is visited according to the ordering. When X; is
visited, which node in Pre(X;) that maximizes the local
score(D,X;,PA;) is added to PA..

Algorithm terminates when no node is added to PA:.

4.2. Constraint-based approach

Given (G, P) let INDp be a set of conditional independences.
INDp is considered as the set of constraints. Constraint-
based approach tries to find out the DAG that satisfies INDp
based on theory of d-separation. In other words the set of d-
separations of the best DAG pattern are the same as INDp.

Example 4.2: Suppose we have V={X, Y, Z} and INDp =
{I(X,Y)}. Because X and Z isn’t d-separated from any set,
there must be a link between X and Z. In similar, there is
must be a link between Y and Z. We have:

Because X-Z-Y is uncoupled chain and there is a d-
separation I/(XY), the chain X-Z-Y should be converged.

If the number of variables is large we need effective
algorithms. The simple algorithm includes two steps:

Firstly, the structure of DAG is drafted as “skeleton”. If there
is no conditional independence relating to X; and X; then the
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link between them is created. So skeleton is the undirected
graph which contains variables (nodes) and links.

The second step is to determine direction of links by
applying four following rules in sequence rule 1, rule 2, rule
3, rule 4:

Rule 1: If the uncoupled chain X-Z-Y exists and Z isn’t in any
set that d-separate X from Y then this chain is assumed
convergent: X~ Z Y

Rule 2: If the uncoupled chain X - Z-Y exists (having an edge
X - Z) then this chain is assumed serial path: X~ Z - Y.

Rule 3: If the edge X - Y caused a directed cycle at a position
in network then it is reversed: X — Y. This rule is applied to
remove directed cycles so that the expected BN is a DAG.

Rule 4: If all rules 1, 2, 3 are consumed the all remaining
links have arbitrary direction.

Example 4.3: Suppose we have V={X Y, Z T} and INDp =
{IXY), I(XT), I(Y,T)}. Because there is no conditional

independence between X and Y, between Z and T, the
“skeleton” is drafted as below:

Applying rule 1: Because the uncoupled chain X-Z-Y exists
and Z isn’t in any set that d-separate X from Y, this chain is
assumed convergent: X - Z Y
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Applying rule 2: Because the uncoupled chain X - Z-T exists,
we have the assumed serial path: X~ Z - T.

5. Conclusion

Three significant domains of Bayesian network (BN) are
inference mechanism, parameter learning and structure
learning. The first domain tells the usability of BN and the
others indicates how to build up BN. The ideology of BN is to
apply a mathematical inference tool (namely Bayesian rule)
into a graph with expectation of extending and enhancing
the ability of such tool so as to solve realistic problems,

especially diagnosis domain.

However in the process of developing BN, there are many
problems involving in real number (continuous case) and
nodes dependency. This report focuses on discrete case
when the probability of each node is discrete CPT, not
continuous PDF. The first-order Markov condition has
important role in BN study when there is an assumption
“nodes are dependent on only their direct parents”. If the
first-order Markov condition isn’t satisfied, many inference
and learning algorithms go wrong. I think that BN will get
more potential and enjoyable if first-order (Markov)
condition is replaced by n-order condition.
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Moreover the parameter & structure learning becomes
difficult when training data is missing (not complete).
Missing data problem is introduced in section 3 but its detail
goes beyond this report. I hope that we have a chance to
discuss about it.

Finally, BN discussed here is “static” BN because the
temporal relationships among nodes aren’t concerned. The
“static” BN is represented at only one time point. Otherwise
dynamic Bayesian network (DBN) aims to model the
temporal relationships among nodes. The process of
inference is concerned in time series; in some realistic case
this is necessary. However the cost of inference and learning
in DBN is much higher than BN because the size of DBN gets
huge for long-time process. Because of the limitation of this
report, the algorithm that keeps the size of DBN intact (not
changed) isn’t introduced here. In general, the essence of
such algorithm is to take advantage of both Markov
condition and knowledge (inference) accumulation. Due to
the complexity of DBN, we should consider to choose which
one (BN or DBN) to apply into concrete domain. It depends
on what your domain is and what your purpose is.
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