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AbstractBayesian network is applied widely in machine learning, data mining,diagnosis, etc; it has a solid evidence-based inference which is familiar tohuman intuition. However Bayesian network causes a little confusionbecause there are many complicated concepts, formulas and diagramsrelating to it. Such concepts should be organized and presented in clearmanner so as to be easy to understand it. This is the goal of this report.This report includes 4 main parts that cover principles of Bayesiannetwork:
Part 1: Introduction to Bayesian network giving some basic concepts.
Part 2: Bayesian network inference discussing inference mechanism insideBayesian network.
Part 3: Parameter learning tells us how to update parameters of Bayesiannetwork.
Part 4: Structure learning surveys some main techniques to build upBayesian network.
Keywords: Bayesian network, parameter learning, structure learning
1.0 Introduction

1.1. Bayesian ruleBayesian network theory starts with the concept of Bayesianinference, a form of statistical method, which is responsiblefor collecting evidences to change the current belief in givenhypothesis. The more evidences are observed, the higherdegree of belief in hypothesis is. First, this belief wasassigned an initial probability. When evidences weregathered enough, the hypothesis is considered trustworthy.Bayesian inference was based on Bayesian rule with somespecial aspects:
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 (1.1)Where H is probability variable denoting a hypothesisexisting before evidence and E is also probability variablenotating an observed evidence.

P(H) is prior probability of hypothesis and P(H | E) which isthe conditional probability of H with given E, is called
posterior probability. It tells us the changed belief inhypothesis when occurring evidence.
P(E) is the probability of occurring evidence E together allmutually exclusive cases of hypothesis. If H and E are

discrete, 
H
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 dHHfHEfEf )()|()( with H and E being continuous, fdenoting probability density function.When P(E) is constant value, P(E | H) is the likelihood

function of H with fixed E. Likelihood function is often usedto estimate parameters of probability distribution.
1.2. Bayesian networkBayesian network (BN) is the directed acyclic graph (DAG)[1] in which the nodes (vertices) are linked together bydirected edges (arcs); each edge expresses the dependencerelationships between nodes. If there is the edge from node
A to B, we call “A causes B” or “A is parent of B”, in otherwords, B depends conditionally on A. So the edge A→Bdenotes parent-child, prerequisite or cause-effectrelationship. Otherwise there is no edge between A and B, itasserts the conditional independence. Let V={X1, X2, X3,…, Xn}and E be a set of nodes and a set of edges, the BN is denotedas below:
G=(V, E) where G is the DAG, V is a set of nodes and E is a setof edges

Figure 1.1: Bayesian network.Note that node Xi is also random variable. In this paper theuppercase letter (for example X, Y, Z, etc.) denotes randomvariables or set of random variables; the lowercase letter(for example x, y, z, etc.) denote its instantiation. We shouldglance over other popular concepts.
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- If there is an edge between X and Y (X→Y or X←Y) then
X and Y are called adjacent each other (or incident to theedge).

- Given k nodes {X1, X2, X3,…, Xk} in such a way that everypair of node (Xi, Xi+1) are incident to the edge Xi→Xi+1where 1  i  k-1, all edges that connects such k nodescompose a path from X1 to Xk denoted as [X1, X2, X3,…, Xk]or X1→X2→…→Xk. The nodes X2, X3,…, Xk-1 are called
interior nodes of the path. The sub-path Xm→…Xn is apath from Xm to Xn: Xm→Xm+1→…→Xn where 1 m<n  k.The directed cycle is a path from a node to itself. The
simple path is a path that has no directed cycle. The DAGis the graph that has no directed cycle.

- If there is a path from X to Y then X is called ancestor of Yand Y is called descendant of X. If Y isn’t a descendant of
X, Y is called non-descendent of X.

- If the direction isn’t considered then edge and path arecalled link and chain, respectively. Link is denoted A – B.Chain is denoted A – B – C, for example.
- Graph G is a tree if every node except root has only oneparent. G is called single-connected if there is only onechain (if exists) between two nodes. Almost BN (s)surveyed here are single-connected DAG (s).The strength of dependence between two nodes isquantified by conditional probability table (CPT). Incontinuous case, CPT becomes conditional probabilitydensity function (CPD). So each node has its own local CPT.In case that a node has no parent, its CPT degenerates intoprior probabilities. For example, suppose Xk is binary nodeand it has two parents Xi and Xj, the CPT (or CPD) of Xk whichis the conditional probability P(Xk | Xi, Xj) has eight entries:
P(Xk=1|Xi=1,
Xj=1) P(Xk=0|Xi=1,

Xj=1)
P(Xk=1|Xi=1,
Xj=0) P(Xk=0|Xi=1,

Xj=0)
P(Xk=1|Xi=0,
Xj=1) P(Xk=0|Xi=0,

Xj=1)
P(Xk=1|Xi=0,
Xj=0) P(Xk=0|Xi=0,

Xj=0)It is asserted that if Xi is binary node and has n parents thenits CPT has 2n+1 entries. However only 2n entries arespecified in practice due to P(Xi=0 | …) = 1- P(Xi=1|…) when
Xi is binary. In case that Xi has k possible values, each CPThas kn entries.
Example 1.1: Suppose event “cloudy” is cause of event“rain”. Events “rain” and “sprinkler” which in turn is cause of“grass is wet” [5] [7]. So we have three causal-effectrelationships of: 1-cloudy to rain, 2- rain to wet grass, 3-sprinkler to wet grass. This model is expressed below by BNwith four nodes and three arcs corresponding to four events

and three relationships. Every node has two possible values
True (1) and False (0) together its CPT.

Figure 1.2: Bayesian network with CPT (s) in example 1.1.Let PAi be the set of parents of node Xi, the joint probability
distribution of whole BN is defined as product of CPT(s) orCPD(s) in continuous case of all nodes.
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So BN is represented by its joint probability distribution Pand its DAG.(G, P) where G=(V, E) is a DAG and P is joint probabilitydistribution.Suppose Ωi is the subset of PAi such that Xi must dependconditionally and directly on every variable in Ωi. In otherwords, there is always an edge from each node in Ωi to Xi andno intermediate node between them. This criterion is calledas Markov condition which will be discussed later. The jointprobability P is re-written as below:

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21 )|(),...,,( (1.3)Back the “wet grass” BN in example 1.1, the joint probabilityis:
P(C, R, S, W)=P(C)*P(R)*P(R|C)*P(S|C)*P(W|C,R,S)We have P(S | C) = P(S) due to the conditional independenceassertion about variables S and C. Furthermore, because S isintermediate node between C and W, we should remove Cfrom P(W | C, R, S), hence, P(W | C, R, S) = P(W | R, S). In short,the joint probability is shown below:
P(C, R, S, W)=P(C)*P(S)*P(R|C)*P(W|R,S)
1.3. Bayesian network referenceUsing Bayesian reference, we need to compute the posteriorprobability of each hypothesis node in network. In general,
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the computation based on Bayesian rule is known as theinference in Bayesian network.Reviewing example 1.1, suppose W becomes evidencevariable which is observed the fact that the grass is wet, so,
W has value 1. There is request for answering the question:how to determine which cause (sprinkler or rain) is morepossible for wet grass. Hence, we will calculate twoposterior probabilities of S (=1) and R (=1) in condition W(=1). These probabilities are also called explanations for W.
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WSPBecause of P(R=1|W=1) < P(S=1|W=1), it is concluded thatsprinkler is the most likely cause of wet grass. Note that twoabove formulas which are also variants of Bayesian rule (seeformula 1.1) will be surveyed more carefully in the“Bayesian network inference” section.
1.4. Markov condition and Markov equivalenceThe inference in BN becomes complex and ineffective whenthe size of BN is large. Suppose BN has n binary nodes. In theworst case, each node has n-1 parents, thus, the jointprobability has n*2n entries. There is a boom of CPT (s).There is a restrictive criterion so-called Markov conditionthat makes the relationships (also CPT) among nodessimpler.Given Bayesian network (G, P) and three sets of nodes:
A= {Xi,…, Xj}, B={Xk,…, Xl} and C={Xm,…, Xn}:
- The denotation IP(A,B) or IG(A,B) indicates that A and Bare independent.
- The denotation IP(A,B|C ) or IG(A,B|C ) indicates that Aand B conditional independent given C.Let (G, P) be Bayesian network, Markov condition is statedthat every node X is conditional independent from its non-descendants given its parent. In other word node X is only

Dependent on its previous nodes (directed parents).
EX  , IP(X, NX | PAX)Where E is the set of edges in G, NX and PAX are set of non-descendants of X and parents of X, respectively.

Figure 1.3: Example about Markov condition: (a) satisfy, (b)not satisfyBecause inference and structure learning algorithms arebased on Markov condition, please pay attention to it.Suppose Bayesian (G, P) satisfies Markov condition, it isnecessary to find out or check whether a node (or a set ofnodes) Z that separates a node (or a set of nodes) X fromanother node (or a set of nodes) Y. It means that whetherthere is IP(X, Y | Z). In this case, X and Y are called d-
separated by Z.There are some important concepts that constitute the d-separation concept:The chain X→Z→Y or X←Z←Y is called serial path.The chain X→Z←Y is called convergent.The chain X←Z→Y is called divergent.The chain X–Z–Y is called uncoupled chain if X and Y aren’tadjacent.Of course, serial path, convergent path and divergent pathare uncoupled chain.
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Figure 1.4: Serial path (a), convergent path (b), divergent path (c), and uncoupled chain (d).Let X, Y and Z be sets of nodes where X, Y, Z V. Given thechain p between X and Y, p is blocked by Z if and only if oneof two conditions is satisfied:There is an intermediate node MZ on p so that all edges on
p incident to M are serial or divergent at M.

There is an intermediate node M on p so that:
MZ and all descendants of MZAll edges op p incident to M are convergent.

Figure 1.5: The chain X–Y–Z–W in (a) is blocked by {Y, Z} because edges incident to Y are divergent at Y.
The chain X–Y–Z–W–T in (b) is blocked by {Z, W} becausethere is such a node Y on chain that Y{Z, W}, its descendant
M {Z, W}, and edges incident to Y are convergent at Y .
X and Y are d-separated by Z if all chains between X and Y are
blocked by Z. Z is also called a d-separation of G.
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Figure 1.6: {X1, X2} is d-separated from {X5, X6} by {X3, X4}.BN (s) which have the same set of nodes are Markovequivalent if and only if they have same d-separations. Inother words, BN (s) that are Markov equivalent have thesame independences. Given G1=(V, E1) and G2=(V, E2), we
Have:

)|,()|,(,,,
21

CBAICBAIVCBA GG Where A, B, C are mutually disjoint sub-set of V. Note that G1and G2 must be DAG and satisfy Markov condition.The goal of giving “Markov equivalent” concept is torepresent BN (s) that have the same structure and jointprobability. So the representation of such BN (s) is called
Markov equivalent class which is also a Bayesian network. Inconclusion, Markov equivalence divides all DAG (or BN) intodisjoint Markov equivalent classes. In practice, Markovequivalent class is often find out or surveyed instead ofconsidering many BN (s).
2.0 Bayesian network inference

2.1. Simple inferenceThe essence of Bayesian reference is to compute theposterior probabilities of nodes given evidences. Note thatevidences or conditions are also nodes which are observedand have concrete values. Back example 1.1 “wet grass”. Theposterior probability of R = 1 (rain) given W =1 (wet grass)is the ratio of the marginal probability of R, W over C, S tothe marginal probability of W over C, R, S.
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Let V={X1, X2,… Xn} be a whole set of nodes. Let D={Xm, Xu,…,
Xn} be a set of evidences, D V. Let d=(xm, xu,…, xn} be theinstantiation of D. In general case, the marginal probabilityof Xk=xk is:
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Where P(X1, X2,…, Xn) is the global joint probability.The marginal probability of D = d is:
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The above formula is the basic idea of simple inference. Notethat it is also a variant of Bayesian rule (see formula 1.1).But the cost of computing it based on marginal probabilitiesis very high because there are a huge number of numericoperations such as additions and multiplications incomputation expression. If the joint probability has manyterms, brute force method for determining combinations ofsuch operations is impossible. There are three mainapproaches that improve this computation:Taking advantage of Markov condition: Pearl’s messagepropagation [1] [4] is well-known algorithm.OR-gate model inference [1] which simulates OR-gateelectronic circuit.Reducing the amount of numeric operations computed inmarginal probability. Optimal factoring [1] is the well-known technique.
2.2. Pearl’s message propagation algorithmSuppose Bayesian network is DAG G=(E, V) which is a treehaving only one root. Given a set of evidence nodes D V;every node in D has concrete value. Let DX is the sub-set of Dincluding X and descendants of X and let NX be the sub-set of
D including X and non-descendant of X. Let CX and PAX bechildren and parents of X, respectively. Let R be root node.Let O be evidence node, OD.
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Figure 2.1: X, DX and NX. Note that NX is green and DX isred.The essence of inference is to compute the posteriorprobability P(X|D) for every X. We have:
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Let λ(X) and π(X) be P(DX|X) and P(X|NX), respectively.
P(X|D) = αλ(X) π(X) (2.2)The λ(X) and π(X) are called λ value and π value of X,respectively.For each child Y of X, let λY(X) be λ message that connects Xand Y. Note that λY(X) is conditional probability of DY given X.
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For each parent Z of X, let πX(Z) be π message that connects Zand X. Note that πX(Z) is conditional probability of X given
NX.
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The λ and π values are updated according to λ and πmessages. Whenever evidence O D occurs, Pearl’salgorithm propagates downwards π message andpropagates upwards λ message in order to update λ valueand π value of each variable X so that the posteriorprobability P(X|D) can be computed. The process ofupwards-downwards propagation spreads over all variablesof network.
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Figure 2.2: Pearl propagation algorithm (X is focused node).Please pay attention to following notices when updating λvalue and π value at certain variable X:If X D and suppose X’s instantiation (value) is x then:
λ(X=x) = P(x|x)= 1 due to XDX and Markov condition. So λ(X
 x) = 0
π (X=x) = P(x|x)= 1 due to XNX and Markov condition. So π(X  x) = 0
P(X=x|D) = 1 and P(X  x|D) = 0.If XD and X is leaf then:
λ(X) = P(Ø|X) = 1 due to DX= Ø
π (X) is computed as if X were intermediate variable.
P(X|D)= απ(X)If XD and X is root then:
λ (X) is computed as if X were intermediate variable.
π (X)=P(X|Ø)=P(X)
P(X|D)= αλ(X)P(X)If XD and X is intermediate variable then:
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Y
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(Because X’s children are mutually independent)
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Z
XX ZZXPNZPZXPNXPX )()|()|()|()|()( 

Where Z is parent of X.
P(X|D)= αλ(X)π(X)

Pseudo-code for Pearl’s algorithm shown below includesthree functions:Function “void init” initialize π value for every node. At thattime the set of evidence nodes D is empty.Function “void update” is executed whenever evidence node
O occurs. This function adds O to set D, propagates upwards
λ message over all parents of O by calling function “void
propagate_up”, and propagates down π message over allchildren of O by calling function “void propagate_down”.Function “void propagate_up_λ_message” computes λ valueand posterior probability of current node, and continues topropagate upwards and downwards λ, π messages by callingitself and function “void propagate_down_π_message”.Process of propagation stops when there is no node to bepropagated.Function  “void propagate_down_π_message” computes πvalue and posterior probability of current node, andcontinues to propagate downwards π message by callingitself. Process of propagation stops when there is no node tobe propagated.void init(G, D){
D=Ø;
for each XV
{
λ(X) = 1;
//due to D = Ø
for each parent Z of X
//propagate up λ message
λX(Z) = 1;
// due to D = Ø
}
P(R|D) = P(R);
//posterior probability of root node
π(R) = P(R);
// π value

for each child K of R
//browse root’s children
propagate_up_π_message(R, K);}void update(O, o){
D = D O
λ(O=o) = π(O=o) = P(O=o|D) = 1;
//due to O D
λ(O  o) = π(O  o) = P(O  o|D) = 1;
//due to OD

if O  R and O’s parent Z D
// O isn’t root and parent of O doesn’t belong to D
propagate_up_ λ_message(O, Z);

for each child K of O such that K D

X

Z

Y T

πX(Z)λX(Z)

λT(X)

πT(X)

λY(X)
πY(X)
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//browse O’s children propagate_up_π_message(O, K);}
void propagate_up_λ_message(Y, X){


Y

Y XYPYX )|()()(  ;

//Y propagate upwards λ message





XCY

Y XX )()(  ;

//update λ value
P(X|D)= αλ(X)π(X);
//compute posterior probability of X
normalize P(X|D);
//eliminate constant α

if X  R and X’s parent Z D
propagate_up_ λ_message(X, Z);

for each child K of X such that K  Y and K D
//browse O’s children propagate_up_π_message(X, K);}void propagate_down_π_message(Z, X)

{




}{

)()()(
XCK

KX

Z

ZZZ  ;
//Y propagate downwards π

message


Z

X ZZXPX )()|()(  ; //update π value

P(X|D)= αλ(X)π(X);
//compute posterior probability of X normalize P(X|D);
//eliminate constant α

for each child K of X such that K D //browse O’s children
propagate_up_π_message(X, K);}
Example 2.1: Given Bayesian network shown in figure 2.3,suppose evidence X has value 1. Hence, we need to computeposterior probabilities of T, Y, Z in condition X=1. Firstly,function “void init” is called to initialize network.

Figure 2.3: Bayesian network with CPT (s)
Function init(G,D) is executed:
D = Ø
λ(Z= 1) = λ(Z = 0) = 1
λ(X = 1) = λ(X = 0) = 1
λ(Y = 1) = λ(Y = 0) = 1
λ(T = 1) = λ(T = 0) = 1

λX(Z=1) = λX(Z=0) = 1
λY(Z=1) = λY(Z=0) = 1

λT(X=1) = λT(X=0) = 1

P(Z=1|d) = P(Z=1) = 0.6. Note that let d be instantiation of D
P(Z=0|d) = P(Z=0) = 0.4
π(Z=1) = P(Z=1) = 0.6
π(Z=0) = P(Z=0) = 0.4Calling propagate_down_π_message(Z, X)Calling propagate_down_π_message(Z, Y)

Z

X Y

T

P(Z=1)    P(Z=0)

0.6         0.4

Z P(Y=1)    P(Y=0)

1 0.6         0.4

0        0.3         0.7

Z P(X=1) P(X=0)

1 0.7 0.3

0        0.2         0.8

X P(T=1)    P(T=0)

1 0.9 0.1

0        0.4         0.6
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Then, function propagate_down_π_message(Z, X) is executed:
πX(Z=1)= π(Z=1) λX(Z=1)=1*0.6=0.6
πX(Z=0)= π(Z=0) λX(Z=0)=1*0.4=0.4

π(X=1) = P(X=1|Z=1) πX(Z=1) + P(X=1|Z=0) πX(Z=0) = 0.7*0.6
+ 0.2*0.4 = 0.5
π(X=0) = P(X=0|Z=1) πX(Z=1) + P(X=0|Z=0) πX(Z=0) = 0.3*0.6
+ 0.8*0.4 = 0.5

P(X=1) = α λ(X = 1) π(X=1)=α1*0.5=α0.5
P(X=0) = α λ(X = 0) π(X=0)=α1*0.5= α0.5

P(X=1) = 5.0
5.05.0

5.0





P(X=0) = 5.0
5.05.0

5.0



Calling propagate_down_π_message(X, T)Then, function propagate_down_π_message(X, T) is executed:

πT(X=1)= π(X=1) =0.5
πT(X=0)= π(X=0) =0.5

π(T=1) = P(T=1|X=1) πT(X=1) + P(T=1|X=0)πT(X=0) = 0.9*0.5
+ 0.4*0.5 = 0.65
π(T=0) = P(T=0|X=1) πT(X=1) + P(T=0|X=0)πT(X=0) = 0.1*0.5
+ 0.6*0.5= 0.4

P(T=1) = α λ(T = 1)π(T=1) = α1*0.65= α0.65
P(T=0) = α λ(T = 0)π(T=0) = α1*0.4= α0.4

P(T=1) = 62.0
4.065.0

65.0





P(T=0) = 38.0
4.065.0

4.0



Then function propagate_down_π_message(Z, Y) is executed:

πY(Z=1)= π(Z=1)λY(Z=1) =1*0.6=0.6
πY(Z=0)= π(Z=0)λY(Z=0)=1*0.4=0.4

π(Y=1) = P(Y=1|Z=1)πX(Z=1) + P(Y=1|Z=0)πX(Z=0) = 0.6*0.6 +
0.3*0.3 = 0.45
π(Y=0) = P(Y=0|Z=1)πX(Z=1) + P(Y=0|Z=0)πX(Z=0) = 0.3*0.4 +
0.8*0.7 = 0.68

P(Y=1) = αλ(Y = 1)π(Y=1) = α1*0.45= α0.45
P(Y=0) = αλ(Y = 0)π(Y=0) = α1*0.68= α0.68

P(Y=1) = 4.0
68.045.0

45.0





P(Y=0) = 6.0
68.045.0

68.0





The initialized Bayesian network is shown below:

Figure 2.4: Initialized Bayesian networkWhen X becomes evidence and gains value 1, the function
update(X, 1) is called:
D = D X={X}Because d is instantiation of D, we have d = {X=1}
λ(X=1) = π(X=1)=P(X=1|d)=1
λ(X=0) = π(X=0)=P(X=0|d)=0Calling propagate_up_λ_message(X, Z)

Calling propagate_down_π_message (X, T)Then, function propagate_up_λ_message(X, Z) is executed:
λX(Z=1) = λ(X=1)P(X=1|Z=1) + λ(X=0)P(X=0|Z=1) = 1*0.7 +
0*0.3 = 0.7
λ(Z=1) = λX(Z=1)λY(Z=1) = 0.7*1 = 0.7
P(Z=1|d) = αλ(Z=1)π(Z=1)= α0.7*0.6 = α0.42

Z

X Y

T

P(Z=1)    P(Z=0)

0.6         0.4

P(Y=1)    P(Y=0)

0.4 0.6

P(X=1)    P(X=0)

0.5 0.5

P(T=1)    P(T=0)

0.62 0.38
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λX(Z=0) = λ(X=1)P(X=1|Z=0) + λ(X=0)P(X=0|Z=0) = 1*0.2 +
0*0.8 = 0.2
λ(Z=0) = λX(Z=0)λY(Z=0) = 0.2*1 = 0.2
P(Z=0|d) = αλ(Z=0) π(Z=0)= α0.2*0.4 = α0.08

P(Z=1|d) = 84.0
08.042.0

42.0





P(Z=0|d) = 16.0
08.042.0

08.0





Calling propagate_down_π_message(Z, Y)Then, function propagate_down_π_message (Z, Y) isexecuted:
πY(Z=1)= π(Z=1) λY(Z=1) =1*0.6=0.6
πY(Z=0)= π(Z=0) λY(Z=0)=1*0.4=0.4

π(Y=1) = P(Y=1|Z=1) πX(Z=1) + P(Y=1|Z=0) πX(Z=0) = 0.6*0.6
+ 0.3*0.4 = 0.48
π(Y=0) = P(Y=0|Z=1) πX(Z=1) + P(Y=0|Z=0) πX(Z=0) = 0.3*0.6
+ 0.8*0.4 = 0.5

P(Y=1) = α λ(Y = 1) π(Y=1) = α1*0.48= α0.48
P(Y=0) = α λ(Y = 0) π(Y=0) = α1*0.5= α0.5

P(Y=1) = 49.0
5.048.0

48.0





P(Y=0) = 51.0
5.048.0

5.0





Then function propagate_down_π_message(X, T) is executed
πT(X=1)= π(X=1) =1
πT(X=0)= π(X=0) =0

π(T=1) = P(T=1|X=1) πT(X=1) + P(T=1|X=0) πT(X=0) = 0.9*1 +
0.4*0 = 0.9
π(T=0) = P(T=0|X=1) πT(X=1) + P(T=0|X=0) πT(X=0) = 0.1*1 +
0.6*0= 0.1

P(T=1) = α λ(T = 1) π(T=1) = α1*0.9= α0.9
P(T=0) = α λ(T = 0) π(T=0) = α1*0.1= α0.1

P(T=1) = 9.0
1.09.0

9.0





P(T=0) = 1.0
1.09.0

1.0





Finally, all posterior probabilities are computed as infollowing figure

Figure 2.4: All posterior probabilities are computed after running Pearl algorithm (X is evidence)
2.3. OR-gate inferenceIn OR-gate electric circuit, the output value becomes TRUE ifthere is at least one of inputs being TRUE. Suppose everynode is binary, OR-gate inference [1] in Bayesian networksimulates such circuit based on three assumptions:

Cause inhibition: Given a cause-effect relationship denotedby edge X→Y, there is a factor I that inhibits X from causing
Y. Factor I is called inhibition of X. That the inhibition I isturned off is the prerequisite of X causing Y.

OFF turned0 II 
ON turned1 II 

Z

X Y

T

P(Z=1)    P(Z=0)

0.84 0.16

P(Y=1)    P(Y=0)

0.49 0.51

P(X=1)    P(X=0)

1             0

P(T=1)    P(T=0)

0.9 0.1
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Inhibition independence: Inhibitions are mutuallyindependent. For example inhibition I1 of X1 is independentfrom inhibition I2 of X2.
OR condition: Suppose we have a set of cause-effectrelationships in which Y is the effect of many causes X1, X2,…,
Xn (see following figure). Let Ii be the inhibition of Xi. Theeffect Y can not happen (Y=0) if at least one of Xi is equal 0 orone of inhibitions is ON:

010:  YIXi ii

Figure 2.4: Cause-effect relationships.Suppose we have n causes X1, X2,…, Xn and one result Y.According to “cause inhibition” and “inhibition independence”assumptions, let Ii be the inhibition of Xi. Let Ai be dummy

variable so that Ai is ON (=1) if Xi is equal to 1 and Ii is OFF(=0).
P(Ai = ON | Xi=1, Ii=OFF) = 1
P(Ai = ON | Xi=1, Ii=ON) = 0
P(Ai = ON | Xi=0, Ii=OFF) = 0
P(Ai = ON | Xi=0, Ii=ON) = 0

P(Ai = OFF | Xi=1, Ii=OFF) = 0
P(Ai = OFF | Xi=1, Ii=ON) = 1
P(Ai = OFF | Xi=0, Ii=OFF) = 1
P(Ai = OFF | Xi=0, Ii=ON) = 1

Applying “OR condition”, the condition probability of Y isequal 0 (Y never happens) if at least one Ai is ON. It meansthat Y happens (Y=1) if all Ai (s) are ON.
P(Y=0| Ai=ON) = 0
P(Y=0| Ai=OFF) = 1
P(Y=1| Ai=ON) = 1
P(Y=1| Ai=OFF) = 0

Figure 2.5: OR-gate model.Now the strength of each cause-effect relationship Xi→Y isquantified by the CPT P(Y|Xi). Suppose causes (X1, X2,…,Xi,…,

X1 I1 X2 I2 Xn In

A1 A2 An

Y

…

1)|0(

0)|0(




OFFAYP

ONAYP

i

i

0...)|(Otherwise

1),1|(




ONAP

OFFIXONAP

i

iii

P(Ii=ON) = 1 – P(Xi=1)

X1 X2 X3 Xn…

Y
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Xn) become evidences having values (x1, x2,…, xi,…, xn). Let
P(Xi=1) = pi be the probability of Xi = 1. The probability of Xi‘s inhibition is the inverse:
P(Ii=ON) = 1 – P(Xi=1)Let O be the set of such i that Xi = 1.

1,  iXOiThe goal of inference is to determine the posteriorprobability P(Y| X1, X2,…,Xi,…, Xn). We have:


Oi

i

Oi
ii

Oi
ii

Oi
iiiiiiii

Oi
iiiiiiii

i
iiiiiiiiii

i
iii

aa i
iiinn

aa i
nninn

aa
nnnnnn

nn

XP

XPXPXPXP

OFFIPOFFIXOFFAPONIPONIXOFFAP

OFFIPOFFIXOFFAPONIPONIXOFFAP
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In conclusion, we have
P(Y=0|X1,X2,…, Xn) = 




Oi

iXP ))(1( (2.5)
P(Y=1|X1,X2,…, Xn) = 1 –




Oi

iXP ))(1( (2.6)
Where O is the set of such i that Xi = 1.
Example 2.2: Given cause-effect relationship shown infollowing figure. Given prior probabilities of causes X1, X2, X3are 0.2, 0.5, 0.3, respectively. We need to compute theconditional probability of effect P(Y=1|X1=1, X2=0, X3=1).

Figure 2.6: OR-gate inference example.Applying formula 2.6, we have:
P(Y=1| X1=1, X2=0, X3=1) =  1 – (1 – P(X1=1))(1 –P(X3=1)) = 1 –
0.8*0.7 = 0.44
2.4. Optimal factoringThe basic idea of this technique is to reduce the amount ofnumeric operations by changing the order of combinationsof such operations. Back example 1.1, given joint probability
P(C, R, S, W)=P(C)*P(S)*P(R|C)*P(W|R,S), the marginalprobability of R = 1 is factorized as below:

 
SC

SRWPCRPSPCPWRP
,

),1|1()|1()()()1,1(

Because each binary variable has 2 values, there are 22combinations of C and S. Each product has 3 multiplications.So the total number of required multiplications is 3*22 = 12.Now the ordering of expression is changed by thefactorization as below:
  

C S

SRWPSPCRPCPWRP ),1|1()()|1()()1,1(

The inner sum of products 
S

SRWPSP ),1|1()( has
1*21=2 multiplications. Although the outer sum of products
 

C S

CRPCP (...))|1()( contains 4 variables, it has 2*21= 4multiplications because expressions which don’t relate tovariable S such as P(C) and P(R=1|C) are taken out the innersum of products. So the total number of requiredmultiplications is 4+2=6. Six multiplications are saved.It is easy to recognize the best ordering of expressionswhich produces the minimal required multiplications if thenumber of variables is small. How we can do that in case ofmany variables. The answer relates to the optimal factoringproblem.Given F = (V, S, Q) is defined as the triple consisting of [1, pp.163]:A set of n nodes (or variables) V= {X1, X2,…, Xn}A set of m sub-sets S = {S{1}, S{2},…, S{m}} where S{I}  VA target set Q VThe factoring α of S is a binary tree satisfying three followingcondition [1, pp.164]:All and only member S{I} of S are leaves.The parent of nodes S{I} and S{J} are denoted S{I J}The root of tree is S{1,2,..,m}Note that S corresponds to operands of marginal probabilityand α corresponds with the factorization of marginalprobability.

X2X1 X3

Y

P(X1) = 0.2 P(X2) = 0.5 P(X3) = 0.3
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Example 2.3: Like example 2.1, let Z, X, Y, T be nodes ofBayesian network shown in following figure. The joint probability is P(Z,X,Y,T) = P(Z)P(X|Z)P(Y|Z)P(T|X).Suppose X is evidence, we need to compute the posteriorconditional probability P(Z=1|X=1). The marginal probabilityover Z, X shown below is the sum of products which will beoptimized:
 

TY

XTPZYPZXPZPXZP
,

)1|()1|()1|1()1()1,1(

The factoring instance F(V, S, Q) is defined as below:
V = {Z, X, Y, T}
S = {S{1}={Z}, S{2}={X, Z}, S{3}={Y, Z}, S{4}={T,X}}
Q = {Z, X}Suppose factoring α1, α2 correspond to two factorizations ofmarginal probability P(Z=1,X=1).

  
Y T

XTPZYPZXPZP )1|()1|(()1|1()1(1

 
TY

XTPZYPZXPZP
,

2 )1|()1|()1|1()1(

Figure 2.7: (a) Factoring α1 and (b) Factoring α2Given F, the cost of factoring α denoted costα(F) is twofollowing steps: All non-leave nodes are determined according to formula:

S{1,2,3,4}}

S{1} S{3}S{2} S{4}

S{1,2} S{3,4} S{1}

S{1,2,3,4}}

S{2,3,4}

S{2}S{3,4}

S{3} S{4}

(b)(a)

Z

X Y

T
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S{I J} = S{I}  S{J}–W{I J} where W{I J}= {wQ and wS{k}for all k I J }The cost of each node is computed according to formula:For leaf nodes: costα(S{j}) = 0, j= m,1For non-leaf nodes: costα(S{I J})=costα(SI) + costα(SJ) + ||2 JI SS Where |.| denotes the cardinality of the set.The cost of factoring α: costα(F)= costα(S{1,…,m}). The less thiscost is, the better binary tree is.Applying optimal factoring problem into Bayesian inference,the set of nodes V in F corresponds with variables in BN andthe tree α corresponds with the ordering of multiplicationsin marginal probability. The cost of factoring instance
costα(F) is equal to the number of multiplications. Theproblem becomes easy when we find out the best binarytree α having the least costα(F) and compute the marginalprobability with the same ordering of multiplications to thistree.Back example 2.3, the cost of factoring α1 is computed asbelow:
costα1(S{1,2,3,4}) = costα1(S{1,2}) + costα1(S{3,4}) = (0+0+20) +(0+0+22) = 5
costα2(S{1,2,3,4}) = costα1(S{2,3,4}) + costα1(S{1}) + 22 =
costα1(S{2,3,4}) + 0 + 22= costα1(S{3,4}) + costα1(S{2}) + 22 + 22= (0+0+21) + 0 + 22 + 22 = 10Because costα1(S{1,2,3,4}) is lesser than costα2(S{1,2,3,4}), thefollowing ordering of multiplications is chosen:

  
Y T

XTPZYPZXPZPXZP )1|()1|(()1|1()1()1,1(

3. Parameter learning

3.1. Beta function and augmented Bayesian networkThere is a family of PDF which quantifies and updates thestrength of conditional dependencies among nodes bynatural way is called beta density function, denoted as β(f; a,
b) or Beta(f; a, b) with parameters a, b, N=a+b where a, bshould be integer number > 0

11 )1(
)()(

)(
)(  




 ba ff
ba

N
f

Figure 3.1: Beta functionsIt means that, there are “a” successful outcomes (forexample, f =1) in “a+b” trials. Higher value of “a” is, higherratio of success is, so, the graph leans forward right. Highervalue of “a+b” is, the more the mass is concentrate around
a/(a+b) and the more narrow the graph is. Definition of betafunction is based on gamma function described below:
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From formula 3.1,
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Suppose there is one binary variable X in network and theprobability distribution of X is considered as relativefrequency having values in [0, 1] which is the range ofvariable F. We add a dummy variable F (whose spaceconsists of numbers in [0, 1], of course) which acts as theparent of X and has a beta density function β(f; a, b), so as to:
P(X=1|f) = f, where f denotes values of F

X and F constitute a simple network which is referred asaugmented BN. So X is referred as real variable (hypothesis)opposite to dummy variable.

Figure 3.2: The simple augmented BN with only onehypothesis node XObviously, P(X=1) = E(F) where E(F) is the expectation of FProof, owing to the law of total probability

F

β(f; a,b) and f have
space [0,1]

X

P(X=1 | f) = f
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The ultimate purpose of Bayesian inference is to consolidatea hypothesis (namely, variable) by collecting evidences.Suppose we perform M trials of a random process, theoutcome of uth trial is denoted X(u) considered as evidencevariable whose probability P(X(u) = 1 | f) = f. So, all X(u) areconditionally dependent on F. The probability of variable X,
P(X=1) is learned by these evidences.We denote the vector of all evidences as D = (X(1), X(2),…, X(M))which is also called the sample of size M. Given this sample,
β(f) is called the prior density function, and P(X(u) = 1) = a/N(due to formula 3.1) is called prior probability of X(u). It is
necessary to determine the posterior density function β(f|D)
and the posterior probability of X, namely P(X|D). The nature
of this process is the parameter learning. Note that P(X|D) isreferred as P(X(M+1) | D).

Figure 3.3: The sample D=(X(1), X(2),…, X(M)) size of MWe only surveyed in the case of binomial sample, in otherwords, D having binomial distribution is called binomialsample and the network in figure 3 becomes a binomialaugmented BN. Then, suppose s is the number of allevidences X(i) which have value 1 (success), otherwise, t isthe number of all evidences X(j) which have value 0 (failed).Of course, s + t = M.
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3.2. Parameter learningThe essence of parameter learning is to compute theposterior density function [1]. Now, we need to compute theposterior density function β(f|D) and the posteriorprobability P(X=1|D). It is essential to determine theprobability distribution of X.
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Then the posterior density function is β(f; a+s, b+t) wherethe prior density function is β(f; a, b). According to formula3.4, the posterior probability:
P(X=1|D) = E( β(f|D) ) =
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
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 (3.8)
In general, you should merely engrave the formula 3.1, 3.4,3.7, 3.8 and the way to recognize prior density function,prior probability of X and posterior density function,posterior probability of X, respectively on your memory.

X(1)

P(X1|f)=f

X(2) …

P(X2|f)=f

X(M)

P(XM|f)=f

F β(f; a,b) and f
have space [0,1]
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3.3. Expanding augmented BN with more than one
hypothesis node

Suppose we have a BN with two binary random variablesand there is conditional dependence assertion betweenthese nodes. See the network and CPT (s) in the figure below

Figure 3.4: BN (a) and expended augmented BN (b)For every node (variable) Xi, we add dummy parent nodes to
Xi, obeying two ways below:If Xi has no parent (not conditionally dependent on anyothers), we add only one dummy variable denoted Fi1 havingthe probability density function β(fi1; ai1, bi1) so as to:
P(Xi=1|fi1)= fi1If Xi has a set of ki parents and each parent pail (l= ik,1 ) isbinary, we add a set of ci=2ki dummy variables Fi = {fi1, fi2,…,

iicf }, in turn, instantiations of parents PAi= {pai1, pai2, pai3,…,

iicpa }. In other words, ci denotes the number ofinstantiations of the parents PAi. We have P(Xi=1|paij, fi1,…,

fij,…,
iicf )=fij. where 11 )1(
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iicf ). Besides this local parameterindependence, we have the global parameter independenceif reviewing all variables Xi s, such below:
β(F1, F2,…, Fn)= β(f11, f12,…,

inicf )= β(fi1) β(fi2)… β(
inicf )All variables Xi and their dummy variables form theexpended augmented BN representing the trust BN in figure4. In the trust BN, the conditional probability of variable Xi

with the instantiation of its parent ijpa , in other words, the
ijth conditional distribution is given by P(Xi=1| ijpa =1) =

E(Fij)=
ij
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a (3.8), that’s to say the expected value of Fij.
Proof,
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Suppose we perform M trials of random process, theoutcome of ith trial which is BN like figure 4 is represented as
a random vector


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X

X containing all hypothesis
variables in network. X(u) is also called evidence vector (orevidence, briefly). M trials constitute the sample of size Mwhich is the set of random vectors denoted as D={X(1), X(2),…,
X(M)}. D is also called evidence matrix. We review only in caseof binomial sample; it means that D is the binomial BNsample of size M. For example, this sample corresponding tothe network in figure 4 is showed below:

X1P(X1=1)    P(X1=0)

1/2           1/2

X2

X1 P(X2=1)

1 1/2
0 1/2(a)

X1 X2

F11β(f11; 1, 1)

F22

β(f22; 1, 1)

F21

β(f21; 1, 1)(b)
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Figure 3.5: Expanded binomial BN sample of size MAfter occurring M trial, the augmented BN was updated anddummy variables’ density functions and hypothesisvariables’ conditional probabilities changed. We need tocompute the posterior density function β(fij|D) of eachdummy variable Fij and the posterior condition probability
P(Xi=1| 1ijpa , D) of each variable Xi. Note that the samples
X(u) s are mutually independent with all given Fij. We have,
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1.
sij, respective to fij, is the number of all evidences thatvariable Xi = 1 and ijpa = 1

tij, respective to fij, is the number of all evidences thatvariable Xi = 1 and ijpa = 0.
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There is the question “how to determine ))1(( ijij t

ij

s

ij ffE  ”.Applying formula 3.5, we have:
)()(

)()(

)(

)(
))1((

ijij

ijijijij

ijij

ijt

ij

s

ij ba

tbsa

MN

N
ffE ijij







 (3.11)Where Nij=aij+bij and Mij=sij+tij

3.4. Updating posterior density function with multi-
node Bayesian network

X(1) … X(M)

F

X1
(1) X2

(1) X1
(2) X2

(2)

F11
F22

X(2)

(a)

F21

(b)
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According to formula 3.8 and 3.12,
P(Xi=1| ijpa =1, D) = E(Fij) = E(β(fij|D)) =
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In short, in case of binomial distribution, if we have thereal/trust BN embedded in the expanded augmentednetwork such as figure 3.4 and each dummy node Fij has aprior beta distribution β(fij; aij, bij) and each hypothesis node
Xi has the prior conditional probability
P(Xi=1| 1ijpa )=E(β(fij))=

ij

ij

N

a , the parameter learningprocess based on a set of evidences is to update the

posterior density function β(fij|D) and the posteriorconditional probability P(Xi=1| 1ijpa ,D). Indeed,
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Example 3.1: Suppose we have the set of 5 evidences
D={X(1), X(2), X(3), X(4), X(5)} owing to network in figure 3.4

x1 x2

X(1) X1(1) = 1 X2(1) = 1
X(2) X1(2) = 1 X2(2) = 1
X(3) X1(3) = 1 X2(3) = 1
X(4) X1(4) = 1 X2(4) = 0
X(5) X1(5) = 0 X2(5) = 0

Table 3.1: Set of evidences D corresponding to 5 trials (sample
of size 5)Note that the first evidence 














1

1
)1(

2

)1(

1)1(

X

X
X implies thatvariable X2=1 given X1=1 occurs in the first trial. We need tocompute all posterior density functions β(f11|D), β(f21|D),

β(f22|D) and all conditional probabilities P(X1=1),
P(X2=1|X1=1), P(X2=1|X1=0) from prior density functions
β(f11; 1,1), β(f21; 1,1), β(f22; 1,1). In fact,
s11=1+1+1+1+0=4 t11=0+0+0+0+1=1
s21=1+1+1+0+0=3 t21=0+0+0+0+1=1
s22=0+0+0+0+0=0 t21=0+0+0+0+1=1

β(f11|D) = β(f11; a11+s11, b11+t11)= β(f11; 1+4, 1+1)= β(f11; 5, 2)
β(f21|D) = β(f21; a21+s21, b21+t21)= β(f21; 1+3, 1+1)= β(f11; 4, 2)
β(f22|D) = β(f22; a22+s22, b22+t22)= β(f22; 1+0, 1+1)= β(f11; 1, 2)and P(X1=1), P(X2=1|X1=1), P(X2=1|X1=0) are expectations of
β(f11|D), β(f21|D), β(f22|D). Then,
P(X1=1)=

7

5

25

5
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P(X2=1|X1=1)=

3

2

24

4
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P(X2=1|X1=0)=

3

1

21

1


Network in figure 3.4 changed as follows:
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Figure 3.6: Updated version of BN (a) and augmented BN (b) in figure 3.4
3.5. Parameter learning in case of data missingIn practice there are some evidences in D such as X(u) (s)which lack information and thus, it stimulates the question“How to update network from data missing”. We mustaddress this problem by artificial intelligence techniques,namely, expectation maximization (EM) algorithm – afamous technique solving estimation of data missing.Example 3.2: Like above example, we have the set of 5evidences D={X(1), X(2), X(3), X(4), X(5)} along with network infigure 4 but the evidences X(2) and X(5) have not data yet.

x1 x2

X(1) X1
(1) = 1 X2

(1) = 1
X(2) X1

(2) = 1 X2
(2) = v1?

X(3) X1
(3) = 1 X2

(3) = 1
X(4) X1

(4) = 1 X2
(4) = 0

X(5) X1
(5) = 0 X2

(5) = v2?

Table 3.2: Set of evidences D (for network in figure 4) withdata missingAs known, s21 , t21 and s22 , t22 can’t be computed directly, itmeans that it is not able to compute directly the posteriordensity functions β(f21|D) and β(f22|D). In evidence X(2), v1must be determined. Obviously, v1 obtains one of two valueswhich is respective to two situations:
X1(2) = 1 and X2(2)=1, it is easy to infer that v1=P(X2(2)=1|X1(2) =

1)=E(β21)=
2121

21

ba
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= ½

X1(2) = 1 and X2(2)=0, it is easy to infer that v1=P(X2(2)=1|X1(2) =

0)=E(β22)=
2222

22

ba

a


= ½

We split X(2) into two X’(2) (s) corresponding to two abovesituations in which the probability of occurrence of X2=1given X1=1 is estimated as ½ and the probability ofoccurrence of X2=0 given X1=1 is also considered as ½. Weperform similarly this task for X(5).
X1 x2

X(1) X1
(1) = 1 X2

(1) = 1
X‘(2) X1

‘(2) = 1 X2
‘(2) = 1/2

X‘(2) X1
‘(2) = 1 X2

‘(2) = 1/2
X(3) X1

(3) = 1 X2
(3) = 1

X(4) X1
(4) = 1 X2

(4) = 0
X‘(5) X1

‘(5) = 0 X2
‘(5) = 1/2

X‘(5) X1
‘(5) = 0 X2

‘(5) = 1/2

Table 3.3: New split evidences D’ for network in figure 3.4
So, we have
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s where s’21,

t’21, s’22, t’22 are the counts in D’. Then
β(f21|D)= β(f21; a21+s’21, b21+t’21)= β(f21;1+5/2, 1+3/2)=
β(f21;7/2, 5/2)
β(f22|D)= β(f22; a22+s’22, b22+t’22)= β(f22;1+1/2, 1+1/2)=
β(f22;3/2, 3/2)

P(X2=1| X1=1)=E(β(f21|D))=

12

7

2/52/7

2/7




P(X2=0| X1=1)=E(β(f22|D))=

2

1

2/32/3

2/3


If there are more evidences, this task repeated more andmore brings out the EM algorithm [1] [6] having two steps.

X1P(X1=1)    P(X1=0)

5/7           2/7

X2

X1 P(X2=1)

1 2/3
0        1/3(a)

X1 X2

F11β(f11; 5, 2)

F22

β(f22; 1, 2)

F21

β(f21; 4, 2)(b)
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Step1. We compute s’ij and t’ij based on theexpected value of given β(fij), s’ij=E(β(fij)) and
t’ij=1- E(β(fij)). Next, replacing missing data by s’ijand t’ij . This step is called Expectation step.Step 2. We determine the posterior densityfunction fij by computing its parameters aij=aij+sijand bij=bij+tij. Note that sij and tij are recomputedabsolutely together on occurrence of s’ij and t’ij. Terminatingalgorithm if the stop condition (for example, the number ofiterations approaches k times) becomes true, otherwise,reiterating step 1. This step iscalled the Maximization step.After kth iteration, we have

)()(

)(

limlim
k

ijij

k

ijij

k

ijij

kijk tbsa

sa
nExpectatio







which will approacha certain limit. Don’t worry about the case of infiniteiterations, we will obtain approximate s’ij, t’ij, posterior fij if kis large enough due to certain value of ijk
nExpectatio


lim

4. Structure learningAs discussed, DAG (s) that contain the same given nodes Vare Markov equivalent if they satisfy Markov condition andhave the same d-separations. In other words, they entail thesame conditional independences and their joint conditionalprobabilities are identical. Let the pattern gp representthese Markov equivalent DAG (s). Such pattern gp is calledMarkov equivalent class. Of course given a set of nodes V,there are a lot of equivalent classes. Let GP be randomvariable whose values are pattern gp. The basic idea ofstructure learning approaches is to find out the pattern gpthat satisfy some condition best. Instead of searching manyindividual DAG According to given condition, there are twomain learning approaches:Score-based approach [1]: For each pattern gpGP, the gpwhich gains the maximal scoring criterion score(D,gp) giventraining data set D is the best gp. Because the essence ofscore-based approach is find out the most likely structure, itis also called model selection [1] approach.Constraint-based approach [1]: Given a set of conditionalindependences (a set of d-separations), the best gp is theDAG which satisfy Markov condition over all and only theseconditional independences. Such independences play therole of the “door latch” for learning algorithm.Note that in structure learning context, Bayesian network orpattern gp is mentioned as a DAG.

4.1. Score-based approachGiven a set of random variables (nodes) V = {X1, X2,…, Xn}, let(G, P) be possible Bayesian network where P is jointconditional probability density and G=(V, E) is the DAG. Let(G, F(G),,  (G)) be the augmented BN with equivalent samplesize N where F(G) is augmented variables (nodes) attachedto every nodes in V and  (G) represents beta distributionsfor augmented (see section about parameter learning).Pattern gp also represents Markov equivalent augmentedBN. Scored-based approach has three following steps:Suppose all augmented BN (s) has the same equivalentsample size N.Let ri be the number of possible values of variable Xi. If Xi isbinary then ri = 2. Let qi be the number of distinctinstantiations of parents of Xi. For example, if Xi and itsparents are binary and Xi have 1 parents then qi = 2. Allaugmented variables Fij representing the conditionalprobability of Xi given instantiation j of its parent areassigned to uniform distribution according to equivalentsample size N:
ii

ijk qr

N
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Given D={X(1), X(2),…, X(M)} is the training data set size M,where X(h) is a trial. Note that X(h)=(X(h)1, X(h)2,…, X(h)n) is a n-dimension vector which is a outcome (instantiation) ofvariable Xi. X(h)i has the same space to Xi. Each DAG gp whichis connected by variables in V is assigned a value so-calledscoring criterion score(D,gp). This score is the posteriorprobability of gp given training data set D.
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P(gp) is the prior probability of gp. P(D) is constant.In practice, score(D,gp) is only dependent on P(D|gp) when
P(D) is ignored and P(gp) is initialized subjectively.
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Which gp gaining maximal score(D,gp) is chosen.
Example 4.1: Suppose there are two variables X1, X2, wedon’t know exactly their relationship but the training data Dis observed as below:

Let gp1 be the DAG in which X1 is parent of X2; otherwise let
gp2 be the DAG in which X1 and X2 are mutually independent.Given the sample size is N = 4

Figure 4.1: Augmented Bayesian networks of gp1 (a) and gp2 (b)
We have:
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Because score(D,gp2) is larger than score(D,gp2), theequivalent pattern gp1 is chosen as Bayesian networkappropriate to training data set.

In above example we recognize that it is difficult todetermine all DAG (s). So the score-based approach becomesineffective in case of many variables. The number of DAG (s)which is surveyed to compute scoring criterion gets huge. Itis impossible to do brute-force searching over DAG (s) space.There are some heuristic algorithms to reduce whole DAG(s) space to smaller space so-called candidate set of DAG (s)obeying some restriction, for example, the prior ordering ofvariables. Such heuristic algorithms are classified intoapproximate learning. The global score can defined as aproduct of local scores:
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Let )( iPAq be the number of distinct instantiations of parentsof XiThe K2 algorithm tries to find out the pattern DAG gp whoseeach variable Xi maximizes local score score(D,Xi,PAi) insteadof discovering all DAG (s). It means that K2 algorithm findsout optimal parents PAi of each Xi. Note that it expects that

X1 X2
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11 F(1)
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the global score will be approached by maximizing eachpartial local score. K2 algorithm has following steps:Suppose there is an ordering (X1, X2,…, Xn). There is nobackward edge, for example, the edge Xi←Xj (if exist) where i
< j is invalid. Let Pre(Xi) be the set of previous nodes of Xi inordering. Let PAi is parents of Xi. K2’s mission is to find out
PAi for every Xi. Firstly, each PAi (s) is set to be empty andeach local score(D,Xi,PAi) is initialized with such empty PAi.Each Xi is visited according to the ordering. When Xi isvisited, which node in Pre(Xi) that maximizes the local
score(D,Xi,PAi) is added to PAi.Algorithm terminates when no node is added to PAi.
4.2. Constraint-based approachGiven (G, P) let INDP be a set of conditional independences.
INDP is considered as the set of constraints. Constraint-based approach tries to find out the DAG that satisfies INDPbased on theory of d-separation. In other words the set of d-separations of the best DAG pattern are the same as INDP.
Example 4.2: Suppose we have V = {X, Y, Z} and INDP ={I(X,Y)}. Because X and Z isn’t d-separated from any set,there must be a link between X and Z. In similar, there ismust be a link between Y and Z. We have:

Because X–Z–Y is uncoupled chain and there is a d-separation I(X,Y), the chain X–Z–Y should be converged.

If the number of variables is large we need effectivealgorithms. The simple algorithm includes two steps:Firstly, the structure of DAG is drafted as “skeleton”. If thereis no conditional independence relating to Xi and Xj then the

link between them is created. So skeleton is the undirectedgraph which contains variables (nodes) and links.The second step is to determine direction of links byapplying four following rules in sequence rule 1, rule 2, rule3, rule 4:
Rule 1: If the uncoupled chain X–Z–Y exists and Z isn’t in anyset that d-separate X from Y then this chain is assumedconvergent: X→Z←Y

Rule 2: If the uncoupled chain X→Z–Y exists (having an edge
X→Z) then this chain is assumed serial path: X→Z→Y.
Rule 3: If the edge X→Y caused a directed cycle at a positionin network then it is reversed: X←Y. This rule is applied toremove directed cycles so that the expected BN is a DAG.
Rule 4: If all rules 1, 2, 3 are consumed the all remaininglinks have arbitrary direction.
Example 4.3: Suppose we have V = {X, Y, Z, T} and INDP ={I(X,Y), I(X,T), I(Y,T)}. Because there is no conditionalindependence between X and Y, between Z and T, the“skeleton” is drafted as below:

Applying rule 1: Because the uncoupled chain X–Z–Y existsand Z isn’t in any set that d-separate X from Y, this chain isassumed convergent: X→Z←Y

X Y
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X Y
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Applying rule 2: Because the uncoupled chain X→Z–T exists,we have the assumed serial path: X→Z→T.

5. ConclusionThree significant domains of Bayesian network (BN) areinference mechanism, parameter learning and structurelearning. The first domain tells the usability of BN and theothers indicates how to build up BN. The ideology of BN is toapply a mathematical inference tool (namely Bayesian rule)into a graph with expectation of extending and enhancingthe ability of such tool so as to solve realistic problems,especially diagnosis domain.However in the process of developing BN, there are manyproblems involving in real number (continuous case) andnodes dependency. This report focuses on discrete casewhen the probability of each node is discrete CPT, notcontinuous PDF. The first-order Markov condition hasimportant role in BN study when there is an assumption“nodes are dependent on only their direct parents”. If thefirst-order Markov condition isn’t satisfied, many inferenceand learning algorithms go wrong. I think that BN will getmore potential and enjoyable if first-order (Markov)condition is replaced by n-order condition.

Moreover the parameter & structure learning becomesdifficult when training data is missing (not complete).Missing data problem is introduced in section 3 but its detailgoes beyond this report. I hope that we have a chance todiscuss about it.Finally, BN discussed here is “static” BN because thetemporal relationships among nodes aren’t concerned. The“static” BN is represented at only one time point. Otherwisedynamic Bayesian network (DBN) aims to model thetemporal relationships among nodes. The process ofinference is concerned in time series; in some realistic casethis is necessary. However the cost of inference and learningin DBN is much higher than BN because the size of DBN getshuge for long-time process. Because of the limitation of thisreport, the algorithm that keeps the size of DBN intact (notchanged) isn’t introduced here. In general, the essence ofsuch algorithm is to take advantage of both Markovcondition and knowledge (inference) accumulation. Due tothe complexity of DBN, we should consider to choose whichone (BN or DBN) to apply into concrete domain. It dependson what your domain is and what your purpose is.
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